传感器与微系统2024,Vol.43Issue(8) :137-140.DOI:10.13873/J.1000-9787(2024)08-0137-04

基于斜率的点云线段提取算法

Line segment extraction algorithm of point cloud based on slope

袁升 孙丙宇 李昊
传感器与微系统2024,Vol.43Issue(8) :137-140.DOI:10.13873/J.1000-9787(2024)08-0137-04

基于斜率的点云线段提取算法

Line segment extraction algorithm of point cloud based on slope

袁升 1孙丙宇 2李昊3
扫码查看

作者信息

  • 1. 安徽建筑大学机械与电气工程学院,安徽合肥230601;中国科学院智能机械研究所,安徽合肥230031
  • 2. 中国科学院智能机械研究所,安徽合肥230031
  • 3. 安徽建筑大学机械与电气工程学院,安徽合肥230601
  • 折叠

摘要

在激光雷达(LiDAR)同步定位与建图(SLAM)中,特征点的提取是否准确决定整个系统中建图和定位精度高低.使用基于曲率的特征点配准存在无法对位姿充分约束的问题.针对这一问题,提出了一种基于斜率的点云预处理算法,可以快速提取点云中的线段(水平和竖直线段).首先,对点云在水平方向通过角度,在竖直方向通过激光通道号进行序列化点云,并通过分区方差去除无效分区;然后,在水平和竖直方向提取直线段,并判断直线类别;最后,输出水平线段和竖直线段.实验数据分析结果表明:与之前的Fast算法、Efficient算法相比,处理速度达到150 Hz,配准效果要比直接使用原始点云效果更好.

Abstract

In LiDAR simultaneous localization and mapping (SLAM ),whether the feature points are extracted accurately determines the precision of mapping and positioning in the whole system.Using curvature-based feature point registration cannot fully constrain the pose.Aiming at this problem,a slope-based point cloud preprocessing algorithm is proposed,which can quickly extract line segments(horizontal and vertical line segment)from point cloud.Firstly,the point cloud is serialized in the horizontal direction through the angle,and in the vertical direction through the laser channel number,and the invalid partitions are removed through the partition variance.Then,straight line segments are extracted in the horizontal and vertical directions,and the straight line categories are judged.Finally,the horizontal and vertical line segments are output.Analysis result of experimental data show that,compared with the previous Fast algorithm and Efficient algorithm,the processing speed is up to 150 Hz,and the registration effect is better than using the original point cloud directly.

关键词

地面墙面分割/激光点云预处理/点云特征点提取

Key words

ground and wall segmentation/laser point cloud pretreatment/feature point extraction of point cloud

引用本文复制引用

出版年

2024
传感器与微系统
中国电子科技集团公司第四十九研究所

传感器与微系统

CSTPCD北大核心
影响因子:0.61
ISSN:1000-9787
参考文献量3
段落导航相关论文