传感器与微系统2024,Vol.43Issue(8) :145-149.DOI:10.13873/J.1000-9787(2024)08-0145-05

基于注意力机制的特征融合孪生网络目标跟踪算法

Object tracking algorithm of feature fusion Siamese network based on attention mechanism

石健彤 王瑜 毕玉 肖洪兵 孙梅
传感器与微系统2024,Vol.43Issue(8) :145-149.DOI:10.13873/J.1000-9787(2024)08-0145-05

基于注意力机制的特征融合孪生网络目标跟踪算法

Object tracking algorithm of feature fusion Siamese network based on attention mechanism

石健彤 1王瑜 1毕玉 1肖洪兵 1孙梅1
扫码查看

作者信息

  • 1. 北京工商大学人工智能学院,北京100048
  • 折叠

摘要

提出一种基于注意力机制的特征融合孪生网络目标跟踪算法.针对目标跟踪算法特征提取网络深度较浅导致特征鲁棒性不足的问题,使用改进后的ResNet—50网络提取模板帧和搜索帧图像的深层和浅层特征,并利用通道和空间注意力机制对提取得到的深浅层特征进行融合.针对目标跟踪算法仅使用首帧图像作为模板导致模板失效、跟踪漂移等问题,在传统孪生网络中增加一条模板分支以将首帧和搜索帧前一帧图像共同作为目标模板.与传统经典的跟踪方法相比,提出的算法在OTB100和VOT2016数据集的相关实验获得了最佳的性能表现,验证了提出算法的有效性和可行性.

Abstract

An object tracking algorithm for feature fusion Siamese network based on attention mechanism is proposed.Aiming at the problem of insufficient feature robustness caused by the shallow depth of the feature extraction network of the object tracking algorithm,using the improved ResNet—50 network to extract the deep and shallow layers features of the template frame and search frame images,and using the channel and spatial attention mechanisms to fuse the extracted deep and shallow features.A template branch is added to the traditional Siamese network,and the first frame and the previous frame of the search frame are used as the object template to deal with the problem of template failure and tracking drift caused by the object tracking algorithm only using the first frame image as a template.Compared with the traditional classical tracking methods,the proposed algorithm has obtained the best tracking performance in the related experiments on the OTB100 and VOT2016 dataset,which verifies the effectiveness and feasibility of the proposed algorithm.

关键词

目标跟踪/孪生网络/特征提取/特征融合/注意力机制

Key words

object tracking/Siamese network/feature extraction/feature fusion/attention mechanism

引用本文复制引用

基金项目

北京市自然科学基金北京市教委科技重点项目(KZ202110011015)

出版年

2024
传感器与微系统
中国电子科技集团公司第四十九研究所

传感器与微系统

CSTPCD北大核心
影响因子:0.61
ISSN:1000-9787
段落导航相关论文