首页|多尺度交叉注意力特征融合的语义分割网络

多尺度交叉注意力特征融合的语义分割网络

扫码查看
针对DeepLabv3+语义分割模型在解码阶段仅融合单尺度低级特征,高级与低级特征融合效果差,导致目标分割精度低的问题,本文基于注意力特征融合(AFF)结构和DeepLabv3+网络,提出了CAAF-DeepLabv3+分割网络.首先,该网络引入不同阶段的多尺度浅层特征来优化空间位置信息.其次,采用交叉方式改进AFF,获得交叉注意力特征融合(CAFF)结构,提高特征间的信息交互,且通过学习高级和低级特征在通道上的重要程度,增强显著性特征,克服语义和尺度不一的特征融合问题,以获取高分辨率和高语义信息的融合特征.在道路标线数据集上进行训练和测试的结果表明,对于目标轮廓复杂、小尺寸分布较多的情况,该网络与UNet、PSPNet、DeepLabv3+、MobileNetv2-DeepLabv3+、AFF-DeepLabv3+网络相比较,平均交并比(MIoU)值和平均像素准确率(MPA)值达到最高,漏分割和错误分割明显降低.
Semantic segmentation network based on multi-scale cross attention feature fusion
Aiming at the problems of the DeepLabv3+semantic segmentation model only fuses single-scale low-level feature in decoder,and the fusion effect of high-level and low-level features is poor,which leads to low target segmentation precision,based on attention feature fusion (AFF )structure and DeepLabv3+network,a CAAF-DeepLabv3+segmentation network is proposed.Firstly,the network introduces multi-scale low layer features at different stages to optimize the spatial position information.Secondly,AFF is improved in a cross way to obtain a multi-scale cross-attention feature fusion(CAFF)structure,which can improve the information interaction between features,it also enhances salient features by learning the importance of high-level and low-level features on the channel,so as to overcome the problem of feature fusion with different semantics and scales and obtain fusedfeatures with high resolution and high semantic information.The results of training and testing on traffic road marking datasets show that,when the contour of the target is complex and more small size of targets are distributed,compared with UNet,PSPNet,DeepLabv3+,MobileNetv2-DeepLabv3+and AFF-DeepLabv3+networks,this network has the highest MIoU and MPA values,and the missed segmentation and false segmentation are obviously reduced.

DeepLabv3+semantic segmentationmulti-scalecross attention feature fusion

张弘、高月、刘保洋

展开 >

西安邮电大学自动化学院,陕西西安710100

DeepLabv3+ 语义分割 多尺度 交叉注意力特征融合

陕西省自然科学基金资助项目

2021SF—478

2024

传感器与微系统
中国电子科技集团公司第四十九研究所

传感器与微系统

CSTPCD北大核心
影响因子:0.61
ISSN:1000-9787
年,卷(期):2024.43(9)