传感器与微系统2024,Vol.43Issue(10) :46-49,54.DOI:10.13873/J.1000-9787(2024)10-0046-04

基于周期特征提取的DLnet预测模型研究

Research on DLnet prediction model based on period feature extraction

廖雪超 黄相
传感器与微系统2024,Vol.43Issue(10) :46-49,54.DOI:10.13873/J.1000-9787(2024)10-0046-04

基于周期特征提取的DLnet预测模型研究

Research on DLnet prediction model based on period feature extraction

廖雪超 1黄相1
扫码查看

作者信息

  • 1. 武汉科技大学计算机科学与技术学院,湖北武汉 430065;智能信息处理与实时工业系统重点实验室,湖北武汉 430065
  • 折叠

摘要

现有的预测方法很少独立分析能源消耗的周期性特征.本文提出了一个短期办公建筑能耗预测模型(DLnet),以解决周期性能耗数据利用效率低下的问题.首先,利用STL对能耗数据的周期成分进行分解,通过网格搜索算法寻找能耗数据的最优周期;然后,根据最优周期构建周期块;再根据周期块的数据形状构建时间序列块数据;之后,利用长短期记忆(LSTM)对时间序列块数据和周期块数据进行训练和学习;最后,通过线性回归将时间序列块数据和周期块数据的预测结果进行融合.事实证明,所提出的模型的4 个预测精度指标分别比LSTM模型高7%,21%,25%和26%.

Abstract

The existing forecasting methods rarely analyze the periodic characteristics of energy consumption independently.A short-term office building energy consumption prediction model(DLnet)is proposed to solve the problem of low efficiency in the utilization of periodic energy consumption data.Firstly,the period component of the energy consumption data is decomposed using STL,and the optimal period of the energy consumption data is searched by grid searching algorithm.Secondly,periodic block is constructed according to optimal period.Then,time-series block data is constructed according to the data shape of the Periodic block.Next,time-series block data and the Periodic block data are trained and learned using LSTM.Finally,the prediction results of the time-series block data and the Periodic block data are fused by linear regression.The fact demonstrates that the four prediction precision indicators of the proposed model are 7%,21%,25%,and 26%higher than those of the long short-term memory(LSTM)model.

关键词

时序块/周期块/最佳周期/STL/长短期记忆

Key words

time-series block/periodic block/optimal period/seasonal-trend decomposition procedures based on Loess/long short-term memory

引用本文复制引用

基金项目

国家自然科学基金资助项目(62273264)

出版年

2024
传感器与微系统
中国电子科技集团公司第四十九研究所

传感器与微系统

CSTPCD北大核心
影响因子:0.61
ISSN:1000-9787
段落导航相关论文