首页|无人机夜间场景低照度图像增强方法

无人机夜间场景低照度图像增强方法

扫码查看
针对无人机夜间场景低照度图像增强的问题,提出一种简单有效的解决方案,无需任何与任务相关的数据.该方法遵循图像自回归原理和灰度世界色彩恒定假说,通过构造RGB通道的高斯分布N(ηi,σi)采样噪声,构建由5 层卷积网络组成的超轻量自回归模型,实现低照度图像的高质量增强.实验结果表明:所提方法在低照度图像增强方面具有较强的竞争力,能够增强图像的亮度和细节信息,获得良好的视觉效果.最重要的是,该模型非常轻量化,毫秒级的推理速度适合部署到无人机实现夜间场景低照度图像的高质量增强.同时该方法基于零样本学习,无需训练数据,具有良好的泛化性.
Low-light image enhancement method for UAV in night scenes
A simple and effective solution without task-relevant data is proposed,aiming at the problem of lowlight image enhancement for unmanned aerial vehicle (UAV)in night scenes. The method follows the image autoregressive principle and the grey-world color constancy hypothesis. It achieves high-quality enhancement of low-light images by constructing a Gaussian-distributed N(ηi,σi)sampling noise of the RGB channel and training an ultra-lightweight autoregressive model consisting of a five-layer convolutional network. The experimental results indicate that the proposed method is highly competitive in low-light image enhancement,as it enhances brightness and detail information and achieves good visual effects. Notably,the model is lightweight,and the millisecond-level inference speed is suitable for high-quality image enhancement of UAVs in low-light night scenes. Moreover,the proposed method is based on zero-sample learning,which requires no training data,thereby has good generalisation.

UAV low-light imageautoregressive modelimage enhancementzero-sample learning

常丽、王晓红、武斌、王明宇

展开 >

山西工程职业学院计算机工程系,山西太原 030009

山西大学电力与建筑学院,山西太原 030000

山西农业大学信息科学与工程学院,山西晋中 030800

无人机低照度图像 自回归模型 图像增强 零样本学习

2024年度全国高等职业院校信息技术课程教学改革研究项目

KT2024168

2024

传感器与微系统
中国电子科技集团公司第四十九研究所

传感器与微系统

CSTPCD北大核心
影响因子:0.61
ISSN:1000-9787
年,卷(期):2024.43(10)