首页|基于传感器阵列及神经网络算法的NH3和NO2混合气体体积分数识别

基于传感器阵列及神经网络算法的NH3和NO2混合气体体积分数识别

扫码查看
针对电阻型气体传感器具有的交叉敏感性,开发了基于WO3 传感器阵列及神经网络算法的NH3,NO2 混合气体体积分数预测技术.采用火焰合成法合成了La掺杂的WO3 敏感材料并制备了气体传感器,与商用MQ—137 电阻型气体传感器组成阵列.通过提取特征值、神经网络训练,构建传感器阵列输出与气体体积分数的映射模型,并使用该模型由传感器阵列的响应结果对NH3,NO2 混合气体进行体积分数预测.实验结果表明:经训练后的神经网络能对NH3,NO2 混合气体中各组分体积分数进行有效预测,平均预测误差分别为3.64%和2.48%.本文所开发的传感器阵列及神经网络算法有效避免了电阻型传感器选择性差的局限,实现了对NH3 和NO2 混合气体的高效识别和体积分数测量.
Volume fraction identification of NH3 and NO2 mixture gases based on sensor array and neural network algorithm
Aiming at the cross sensitivity of resistive gas sensors,volume fraction prediction technology of NH3 and NO2 mixture gases based on WO3 sensor array and neural network algorithm is developed.La-doped WO3 sensitive material synthesized by flame synthesis method and gas sensor is prepared,and constituent array with commercial MQ—137 resistive gas sensor.By extracting eigen value,neural network training,construct mapping model for sensor array output and gas volume fraction,and use this model to predict volume fraction of mixed gas of NH3,NO2 by the response result of sensor array.The experimental results illustrate that trained neural network can effectively predict the volume fraction of each component of mixed gas of NH3,NO2,the average prediction errors are 3.64%and 2.48%,respectively.The developed sensor array and neural network algorithm effectively avoid limitation of poor selectivity of resistive sensor,realize efficient identification and volume fraction measurement of mixed gas of NH3 and NO2.

sensor arrayNO2NH3cross-selectivityneural network algorithm

包叶朋、张毅然、陈婷、湛日景、林赫

展开 >

新能源动力研究所教育部重点实验室上海交通大学,上海 200240

传感器阵列 二氧化氮 氨气 交叉敏感性 神经网络算法

国家自然科学基金资助项目中国环境科学研究院国家环境保护机动车污染控制与模拟重点实验室开放基金资助项目中央级公益性科研院所基本科研业务费专项项目

52006142VECS2022K032022YSKY—05

2024

传感器与微系统
中国电子科技集团公司第四十九研究所

传感器与微系统

CSTPCD北大核心
影响因子:0.61
ISSN:1000-9787
年,卷(期):2024.43(10)