首页|基于改进蚁群算法的海上目标搜索路径规划

基于改进蚁群算法的海上目标搜索路径规划

扫码查看
针对最大最小蚁群算法(MMAS)在最小时间搜索(MTS)路径规划问题中存在的收敛速度慢和易陷入局部最优问题,提出了一种基于MMAS的改进算法.首先,结合目标运动速度改进启发函数因子;其次,对最优路径进行信息素奖励;另外,使用满足正态分布的信息素挥发系数自适应的更新信息素,改进后的算法能加快算法收敛速度和避免搜索陷入局部最优.仿真结果表明:改进后的蚁群算法得到的搜索路径搜索到目标的概率更大,且期望搜索时间更短.
Maritime target search path planning based on improved ant colony algorithm
Aiming at the problems of slow convergence speed and easy to fall into local optimality in the minimum time search(MTS)path programming problem of the maximum and minimum ant colony system(MMAS)algorithm,an improved algorithm based on MMAS is proposed.Firstly,the heuristic function factor is improved combined with the target motion speed.Secondly,pheromones are rewarded for the optimal path.In addition,updated pheromones are used to meet the normal distributed pheromones with adaptive volatilization coefficients,the improved algorithm can speed up the convergence speed of the algorithm and avoid the search falling into local optimum.Simulation results show that the improved ant colony algorithm has a higher probability of searching the target in the search path,and the expected search time is shorter.

target searchpath planningpheromones tablesheuristic functionnormal distribution

孙艺松、胡海军、李乐、耿正霖

展开 >

长沙理工大学数学与统计学院,湖南长沙 410114

国防科技大学气象与海洋学院,湖南长沙 410073

目标搜索 路径规划 信息素表 启发式函数 正态分布

2024

传感器与微系统
中国电子科技集团公司第四十九研究所

传感器与微系统

CSTPCD北大核心
影响因子:0.61
ISSN:1000-9787
年,卷(期):2024.43(10)