首页|电容悬浮间隙传感器非线性校正研究

电容悬浮间隙传感器非线性校正研究

扫码查看
针对悬浮间隙传感器输出特性非线性严重的问题,提出一种结合径向基核函数和多项式核函数优点的混核最小二乘支持向量机(HKLSSVM)作为电容悬浮间隙传感器的非线性校正模型并采用浣熊优化算法(COA)对HKLSSVM的惩罚因子和核函数参数进行优化。为验证模型的有效性,分别采用径向基神经网络模型、传统LSSVM模型、粒子群优化(PSO)算法-HKLSSVM模型以及COA-HKLSSVM模型进行非线性校正仿真分析。结果表明,COA-HKLSSVM模型在电容悬浮间隙传感器非线性校正的应用中表现出最佳的校正精度与稳定性,校正后的电容悬浮间隙传感器线性度为0。43%,均方根误差为0。022 mm,最大误差为0。068 mm,满足悬浮控制系统对悬浮间隙传感器的线性要求。
Research on nonlinear correction of capacitive suspension gap sensor
To address the issue of severe nonlinearity in the output characteristics of the capacitive suspension gap sensor,a hybrid kernel least squares support vector machine(HKLSSVM)model is proposed as the nonlinearity correction model. This model combines the advantages of the radial basis function and the polynomial kernel function. Furthermore,the coati optimization algorithm(COA)is employed to optimize the penalty factor and kernel function parameters of the HKLSSVM model. To validate the effectiveness of the model,the radial basis neural network model,the traditional LSSVM model,the particle swarm optimization(PSO)algorithm-HKLSSVM model and the COA-HKLSSVM model are used for nonlinear correction simulation analysis. The results show that the COA-HKLSSVM model shows the best correction precision and stability in the application of nonlinear correction of capacitive suspension gap sensor,and the linearity of the corrected capacitive suspension gap sensor is 0.43%,the root mean square error is 0.022 mm,and the maximum error is 0.068 mm,which meets the linearity requirements of the suspension control system for the suspension gap sensor.

capacitive suspension gap sensornonlinear correctioncoati intelligent optimization algorithm

郑洋阳、王滢、陈康、李贵、陈友豪

展开 >

西南交通大学电气工程学院,四川成都611756

磁浮技术与磁浮列车教育部重点实验室,四川成都611756

电容悬浮间隙传感器 非线性校正 浣熊智能优化算法

2024

传感器与微系统
中国电子科技集团公司第四十九研究所

传感器与微系统

CSTPCD北大核心
影响因子:0.61
ISSN:1000-9787
年,卷(期):2024.43(12)