首页|基于深度注意力Q网络的机器人路径规划研究

基于深度注意力Q网络的机器人路径规划研究

扫码查看
针对传统机器人路径规划算法在部分可观测环境中收敛速度慢、准确率低的问题,提出基于深度注意力Q网络(DAQN)的机器人路径规划方法.首先,为克服传统深度Q网络(DQN)在处理部分可观测马尔科夫决策过程(POMDP)时由于缺乏记忆单元而导致的局限性,提出融合注意力机制的改进DQN算法,充分利用和挖掘包含历史数据的感知信息;其次,基于人工势场(APF)法,设计机器人移动距离和方向的奖励机制,提升路径规划的准确性;最后,在二维栅格地图仿真环境下验证DAQN算法的有效性.结果表明:DAQN算法在部分可观测环境中的路径规划表现显著优于其他算法,该算法能够在复杂环境中实现更加优越的路径规划效果.
Research on robot path planning based on deep attention Q-networks
Aiming at the problems that traditional robot path planning algorithms have slow convergence speed and low accuracy in partially observable environments,a robot path planning method based on deep attention Q network(DAQN)is proposed. Firstly,in order to overcome the limitations of the traditional DQN due to the lack of memory units when processing partially observable Markov decision processes (POMDP ),an improved DQN algorithm that fuses the attention mechanism is proposed to fully utilize and mine perceptual information including historical data. Secondly,a reward mechanism for movement distance and direction is of the robot designed based on the artificial potential field(APF)method to improve the accuracy of path planning. Finally,the effectiveness of the DAQN algorithm is verified in a two-dimensional grid map simulation environment. The results show that the path planning performance of the DAQN algorithm in partially observable environments is significantly better than other algorithms,the algorithm can achieve superior path planning effects in complex environments.

robotsrath planningpartially observable Markov decision processdeep reinforcement learningattention mechanism

马海杰、薛安虎

展开 >

山西机电职业技术学院,山西长治046011

机器人 路径规划 部分可观测马尔可夫决策过程 深度强化学习 注意力机制

2024

传感器与微系统
中国电子科技集团公司第四十九研究所

传感器与微系统

CSTPCD北大核心
影响因子:0.61
ISSN:1000-9787
年,卷(期):2024.43(12)