首页|基于语义分割和人体姿态估计的引体向上测试平台设计

基于语义分割和人体姿态估计的引体向上测试平台设计

扫码查看
为了促进体测的智能化发展,设计了一种结合语义分割与人体姿态估计的引体向上测试系统.在充分考虑到引体向上计数规则和硬件部署的基础上,针对语义分割模型DeepLabV3+的特征提取部分Xception用ShuffleNetV2进行轻量化改进,并在解码模块中引入高效通道注意力(ECA)机制,整体应用到引体向上的单杠的分割任务中;运用姿态估计模型BlazePose检测人体关键点信息,通过其位置坐标之间的变换特征编写判别算法,完成引体向上测试功能.最后,将单杠目标分割任务与人体关键点检测任务成功部署在边缘计算平台Jetson nano上,并使用TensorRT加速推理,实现了18 fps的流畅运行.
Design of pull-up test platform based on semantic segmentation and human body posture estimation
In order to promote the intelligent development of body measurement,a pull-up test system combining semantic segmentation and human body pose estimation is designed. On the basis of fully considering the pull-up counting rule and hardware deployment,the feature extraction part Xception of the semantic segmentation model DeepLabV3+is lightweight improved by ShuffleNetV2,and the efficient channel attention(ECA)mechanism is introduced into the decoding module,which is applied to the segmentation task of the pull-up horizontal bar as a whole. The pose estimation model BlazePose is used to detect the key point information of the human body,and the discriminant algorithm is written through the transformation characteristics between its position coordinates to complete the pull-up test function. Finally,the horizontal bar target segmentation task and the human body key point detection task are successfully deployed on the edge computing platform Jetson nano,and TensorRT is used to accelerate the reasoning and achieve smooth operation of 18 frames.

DeepLabV3+BlazePosepull-upJetson nano

张旭、刘罡、魏志

展开 >

南京信息工程大学电子与信息工程学院,江苏南京210044

无锡学院电子信息工程学院,江苏无锡214105

DeepLabV3+ BlazePose 引体向上 Jetson nano

2024

传感器与微系统
中国电子科技集团公司第四十九研究所

传感器与微系统

CSTPCD北大核心
影响因子:0.61
ISSN:1000-9787
年,卷(期):2024.43(12)