首页|改进Faster R-CNN微缺陷检测算法研究

改进Faster R-CNN微缺陷检测算法研究

扫码查看
小目标检测是缺陷检测中的难点,存在检测效果差、速度慢、定位精度低等问题.针对锂电池胶带表面微缺陷特征信息少、识别准确率低的问题,提出融合多尺度信息的Faster R-CNN模型.首先,将残差网络ResNet—50与递归特征金字塔作为特征提取网络,提升对微小缺陷的特征提取能力;其次,通过感兴趣区域(ROI)校准模块消除原网络定位时2次量化取整引入的误差,提升缺陷定位精度;最后,优化损失函数,解决模型对难易样本间学习能力的不平衡问题.改进后Faster R-CNN模型对锂电池胶带表面微缺陷检测的平均精度高达97.9%,比原始Faster R-CNN 提高2.1%.
Research on micro-defect detection algorithm based on improved Faster R-CNN
Small target detection is a difficult problem in defect detection,with problems such as poor detection effect,slow speed and low positioning precision. Faster R-CNN model that fuses multi-scale information is proposed aiming at the problems of few feature information and low recognition accuracy of micro-defects feature on the surface of lithium battery tapes. Firstly,the residual network(ResNet)—50 and recursive feature pyramid are used as the feature extraction network to improve the feature extraction capability for micro-defects. Secondly,the error introduced by two quantization rounding in the original network localization is eliminated by the region of interest(ROI)calibration module to improve the defect localization precision. Finally,the loss function is optimized to solve the imbalance problem of learning ability between difficult and easy samples of the model. The improved Faster R-CNN model achieves an average precision of 97.9% for the detection of micro-defects on the surface of lithium battery tapes,which is increased 2.1% than the original Faster R-CNN.

lithium battery tapedefect detectionFaster R-CNNfeature fusion

黄梦涛、付晨

展开 >

西安科技大学电气与控制工程学院,陕西西安710054

西安市电气设备状态监测与供电安全重点实验室,陕西西安710054

锂电池胶带 缺陷检测 Faster R-CNN 特征融合

2024

传感器与微系统
中国电子科技集团公司第四十九研究所

传感器与微系统

CSTPCD北大核心
影响因子:0.61
ISSN:1000-9787
年,卷(期):2024.43(12)