首页|基于SSD改进的域适应暗光人脸检测算法

基于SSD改进的域适应暗光人脸检测算法

扫码查看
人脸检测技术已经广泛应用于实际场景,然而在光照条件恶劣的情况下,人脸检测任务存在许多挑战,包括:人脸特征难以提取、可判别性差、标注数据分布不平衡等。针对上述问题,提出了基于SSD改进的域适应暗光人脸检测算法。首先,采用图像增强和域适应的方法缩小正常光数据和暗光数据分布之间的域差异;其次,基于SSD检测框架提出了一个基于注意力机制的特征增强模块;最后,针对原始特征图和增强特征图,提出渐近损失函数。实验结果表明,该方法在暗光环境下,相比目前主流的人脸检测方法,有更具竞争力的表现。
Domain adaptation dark-light face detection algorithm based on improved SSD
Face detection techniques have been widely used in practical scenarios,however,there are many challenges in face detection under poor lighting conditions,including difficulty in extracting face features,poor discriminability,and unbalanced distribution of annotated data. Aiming at these problems,a domain adaptation dark-light face detection algorithm based on improved SSD is proposed. Firstly,image enhancement and domain adaptation method are used to reduce the domain difference between normal light data and dark-light data distributions. Secondly,an attention mechanism-based feature enhancement module is proposed based on the SSD detection framework. Finally,an asymptotic loss function is proposed for the original feature map and the enhanced feature map. Experimental results show that the method has a more competitive performance in the dark light environment compared with current mainstream face detection methods.

face detection algorithmdark facedomain adaptation modulefeature enhancement moduleattention mechanism

张祖希、吴金明、祝永新

展开 >

中国科学院上海高等研究院,上海201210

中国科学院大学,北京100049

人脸检测算法 暗光人脸 域适应 特征增强模块 注意力机制

2024

传感器与微系统
中国电子科技集团公司第四十九研究所

传感器与微系统

CSTPCD北大核心
影响因子:0.61
ISSN:1000-9787
年,卷(期):2024.43(12)