首页|基于深度学习的乳腺MRI图像自动分类研究

基于深度学习的乳腺MRI图像自动分类研究

扫码查看
目的 为了实现图像性质的自动甄别,通过深度学习技术和程序构建多参数乳腺MRI图像自动分类模型并验证其效能.材料与方法 回顾性收集我院2010年1月至2020年11月乳腺MRI图像质量合格数据862例(数据集Ⅰ),按序列分三类:T2WI、T2WI脂肪抑制序列(fat-suppressed T2WI,FS T2WI)、表观扩散系数(apparent diffusion coefficient,ADC),训练序列分类模型.回顾性收集我院2013年2月至2020年4月乳腺MRI图像质量合格数据377例(数据集Ⅱ),按动态对比增强(dynamic contrast-enhanced,DCE)-MRI 期相特征分三类:无对比剂期(no-contrast,NoC)、对比剂增强早期(contrast enhanced early,CEearly)、对比剂增强期(contrast enhanced,CE),训练DCE期相分类模型.回顾性收集我院2021年10月至2021年12月乳腺MRI图像质量合格数据95例(数据集Ⅲ),用于模型(序列和DCE期相)预测效能的独立验证,并通过程序对数据集Ⅲ中的扩散加权成像(diffusion weighted imaging,DWI)参数进行分类:DWI-high和DWI-low.以影像医师依据图像序列、强化特点及参数进行分类的结果为金标准,采用混淆矩阵的方法评价模型的分类效能.结果 在序列分类模型中,总体准确率为92.0%,对ADC、T2WI、FS T2WI各自分类的准确率为100.0%、84.9%、100.0%;在DCE期相分类模型中,总体准确率为90.4%,对NoC、CEearly、CE各自分类的准确率为89.7%、39.2%、95.7%;程序在DWI参数分类中,对DWI-high和DWI-low的分类结果与医师完全一致.结论 利用深度学习模型和程序技术对多参数乳腺MRI进行图像序列、期相和参数分类,输出结果与医师分类结果一致性高,基本满足临床需要.
Research on automatic classification of breast MRI images based on deep learning
Objective:To train and verify an automatic image classification model based on deep learning and program.Materials and Methods:A total of 862 breast MRI images were collected from the picture archiving and communication system(PACS)system from January 2010 to November 2020(dataset Ⅰ).The images were divided into three categories:T2WI,fat-suppressed(FS)T2WI,apparent diffusion coefficient(ADC).A deep learning model of sequence differentiation was trained with the dataset Ⅰ.Another group of 377 breast MRI images from February 2013 to April 2020(data set Ⅱ)were collected and divided into three categories:no-contrast(NoC),contrast enhanced early(CEearly),contrast enhanced(CE)according to the phase characteristics of dynamic contrast-enhanced(DCE).A deep learning model of phase differentiation of DCE was trained with the dataset Ⅱ.A third group of 95 breast MRI images(data set Ⅲ)were collected from October 2021 to December 2021 for independent validation of the classification models(different sequences and different phases of DCE).Then the diffusion weighted imaging(DWI)parameters were classified by the program in the data set Ⅲ(DWI-high and DWI-low).Using the classification results of radiologists on images as the gold standard,according to image sequence,enhancement characteristics and parameters on as the gold standard,the confusion matrix was used to evaluate the classification performance of the model.Results:In the sequence classification model,the overall prediction accuracy was 92.0%,and the prediction accuracy for each sequence of ADC,T2WI and FS T2WI were 100.0%,84.9%,and 100.0%,respectively.In the DCE classification model,the overall prediction accuracy was 90.4%,and the prediction accuracy for each sequence of NoC,CEearly,and CE were 89.7%,39.2%,and 95.7%,respectively.The program's classification of DWI-high and DWI-low was exactly the same as that of the radiologist.Conclusions:Using deep learning model and program technology to classify the image sequence,phase and parameters of multi-parameter breast MRI,the output results are highly consistent with the classification results of physicians,which basically meet the clinical needs.

breast tumorautomated classification of imagesdeep learningartificial intelligencemagnetic resonance imaging

马明明、秦乃姗、姜原、张耀峰、张晓东、王霄英

展开 >

北京大学第一医院医学影像科,北京 100034

北京赛迈特锐医疗科技有限公司,北京 100011

乳腺肿瘤 图像自动分类 深度学习 人工智能 磁共振成像

2024

磁共振成像
中国医院协会 首都医科大学附属北京天坛医院

磁共振成像

CSTPCD北大核心
影响因子:1.38
ISSN:1674-8034
年,卷(期):2024.15(1)
  • 30