首页|基于多参数MRI影像组学联合临床病理变量预测乳腺癌新辅助治疗的敏感性

基于多参数MRI影像组学联合临床病理变量预测乳腺癌新辅助治疗的敏感性

扫码查看
目的探讨基于多参数磁共振成像(multi-parametric magnetic resonance imaging,mpMRI)影像组学联合临床病理变量预测乳腺癌对新辅助治疗(neoadjuvant therapy,NAT)敏感性的价值.材料与方法本研究共纳入248例经病理确诊的乳腺癌患者,并按照7:3比例随机分为训练队列(173例)和验证队列(75例),所有患者在行NAT前均接受mpMRI检查.采用Miller-Payne(MP)分级系统评估NAT疗效,MP 1~2级视为对NAT反应不敏感,MP 3~5级视为对NAT反应敏感.基于动态对比增强MRI(dynamic contrast-enhanced MRI,DCE-MRI)、T2WI、扩散加权成像(diffusion weighted imaging,DWI)序列图像勾画肿瘤区域并提取和筛选影像组学特征,使用最小绝对收缩和选择算子(least absolute shrinkage and selection operator,LASSO)算法计算影像组学评分(radiomics score,Rad-score).采用单因素逻辑回归分析临床病理变量,包括年龄、月经状态、分子亚型、化疗方案、雌激素受体(estrogen receptor,ER)、孕激素受体(progesterone receptor,PR)、人表皮生长因子受体-2(human epidermal growth factor receptor-2,HER-2)和Ki-67增值指数,将差异有统计学意义的临床病理变量和Rad-score纳入多因素逻辑回归分析,建立影像组学-临床联合模型和列线图.使用受试者工作特征(receiver operator characteristic,ROC)曲线、校准曲线及决策曲线分析(decision curve analysis,DCA)评估模型的预测效能.结果单因素逻辑回归分析表明,Rad-score(P<0.001)、ER表达状态(P=0.001)、化疗方案(P=0.031)与乳腺癌NAT疗效敏感显著相关.Rad-score与ER表达状态、化疗方案所构建的影像组学-临床联合模型在训练队列中AUC为0.845(95%CI:0.780~0.910),验证队列中AUC为0.820(95%CI:0.718~0.923).列线图在预测乳腺癌对NAT敏感性方面有较高的区分度(C指数:训练队列为0.842,验证队列为0.822),校准曲线显示一致性良好.临床决策曲线显示列线图具有较高的总体净效益.结论mpMRI影像组学结合临床病理变量的联合模型及列线图能准确预测乳腺癌对NAT的敏感性.
Radiomics based on multiparametric MRI for prediction of breast cancers sensitive to neoadjuvant chemotherapy
Objective: To predict the sensitivity of breast cancer to neoadjuvant therapy (NAT) based on multiparametric magnetic resonance imaging (mpMRI) combined with clinical variables.Materials and Methods: A total of 248 patients with pathologically confirmed breast cancer were enrolled in this study and randomly divided into a training group (173 cases) and a validation group (75 cases) in a 7:3 ratio. All patients underwent mpMRI examination before NAT. The Miller-Payne (MP) grading system was used to assess the effectiveness of NAT, with MP grades 1-2 considered as insensitive to NAT response, and MP grades 3-5 as sensitive. Based on dynamic contrast-enhanced MRI (DCE-MRI), T2WI, and diffusion weighted imaging (DWI) sequence images to delineate tumor regions, to extract and filter imaging radiomics features. A radiomics score (Rad-score) was derived using the least absolute shrinkage and selection operator algorithm. Univariate logistic regression was ultilized to analyze clinical and pathological variables, including age, menstrual status, molecular subtype, chemotherapy regimen, estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor-2 (HER-2), and tumor proliferative index Ki-67. Significant clinical and pathological variables, along with the Rad-score, were included in the multivariate logistic regression analysis to establish an radiomics-clinical combined model and nomogram. The predictive performance of model was assessed using receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis (DCA). Results: Univariate logistic regression analysis showed that Rad-score (P<0.001), ER expression status (P=0.001), and chemotherapy regimen (P=0.031) were significantly associated with the sensitivity of NAT in breast cancer. The AUC of the radiomics-clinical combined model constructed by Rad-score with ER expression status and chemotherapy regimen was 0.845 (95% CI:0.780-0.910) in the training cohort, and 0.820 (95% CI: 0.718-0.923) in the validation cohort. The nomogram in prediction of breast cancer susceptibility to NAT had a higher degree of differentiation (C index: training queue is 0.842, validation queue is 0.822), the calibration curve shows good consistency. The clinical decision curve showed that the nomogram had a high overall net benefit. Conclusions: The integration of radiomics and clinical variables and nomogram show promise in predicting sensitivity of breast cancer to neoadjuvant therapy.

breast cancerradiomicsmulti-parametric magnetic resonance imagingmagnetic resonance imagingneoadjuvant therapysensitivity

赵青、苏桐、代婷、王锐、张硕、陶阳、吕发金、欧阳祖彬

展开 >

重庆医科大学附属第一医院放射科,重庆 400016

重庆市江北区中医院放射科,重庆 400020

重庆市合川区人民医院放射科,重庆 401519

乳腺癌 影像组学 多参数磁共振成像 磁共振成像 新辅助治疗 敏感性

国家重点研发计划项目重庆市卫生计生委医学科研项目

2020YFA07140022015MSXM011

2024

磁共振成像
中国医院协会 首都医科大学附属北京天坛医院

磁共振成像

CSTPCD北大核心
影响因子:1.38
ISSN:1674-8034
年,卷(期):2024.15(6)
  • 1