首页|动态功能连接在孤独症谱系障碍中的应用及研究进展

动态功能连接在孤独症谱系障碍中的应用及研究进展

扫码查看
孤独症谱系障碍(autism spectrum disorder,ASD)是一种异质性神经发育障碍,由人类大脑系统中的信息流受损所致,具有高度遗传性,并与动态功能连接(ynamic functional connectivity,DFC)受损相关.ASD患者是影响较为深远的儿童精神疾病之一,确诊患儿的家庭也将面临来自财务、精神和社会的多重压力和挑战.既往关于ASD的研究多基于静息态功能连接(static functional connectivity,SFC),但SFC在很大程度上没有考虑到时间变异性的存在和潜力对大脑功能的影响.近年来,由于DFC可以准确捕捉功能连接(functional connectivity,FC)随时间的波动,揭示不同FC状态之间的转换,在ASD的研究中广泛使用.本文对DFC一些常见及较新方法,如滑动窗口法(sliding-window,SW)、隐马尔可夫模型(hidden markov model,HMM)、主特征向量动力学分析(leading eigenvector dynamics analysis,LEiDA),以及这些方法在ASD中的应用和最新研究进展进行综述,并对这些方法优势及不足之处进行总结、比较.本综述期望通过对DFC方法及其应用进行总结为ASD的早期诊断和个性化治疗提供了新途径.通过分析DFC模式,研究者能够识别出与ASD相关的特定连接特征,有望开发出基于DFC的生物标志物,提高ASD的诊断准确性和可靠性.
Dynamic functional connectivity in autism spectrum disorders: applications and research advances
Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder resulting from impaired information flow in human brain systems, highly heritable and associated with impaired dynamic functional connectivity (DFC). Individuals with ASD are one of the more far-reaching child psychiatric disorders, and the families of diagnosed children are faced with multiple stressors and challenges from financial, emotional, and social perspectives. Previous research on ASD has been based on resting-state functional connectivity (SFC), but SFC has largely failed to take into account the presence and potential of temporal variability to impact brain function. In recent years, DFC has been widely used in ASD studies because it can accurately capture the fluctuations of functional connectivity (FC) over time and reveal the transitions between different FC states. In this paper, we review some common and newer methods of DFC, such as the sliding-window (SW) , the hidden Markov model (HMM), and the leading eigenvector dynamics analysis (LEiDA), as well as the applications and recent research progress of these methods in ASD, and summarize and compare the advantages and shortcomings of these methods. This review expects to provide a new way for early diagnosis and personalized treatment of ASD by summarizing the DFC methods and their applications. By analyzing DFC patterns, researchers are able to identify specific connective features associated with ASD, and are expected to develop DFC-based biomarkers to improve the diagnostic accuracy and reliability of ASD.

autism spectrum disordermagnetic resonance imagingfunctional magnetic resonance imagingbrain networkfunctional networkdynamic functional connectivity

伍光榕、张国敏、许媛媛、杨伟

展开 >

遵义医科大学第三附属医院(遵义市第一人民医院)影像科,遵义 563000

孤独症谱系障碍 磁共振成像 功能磁共振成像 脑网络 功能网络 动态功能连接

遵义市科技计划项目遵义市科技计划项目

遵市科合HZ字[2020]125号遵市科合HZ字[2023]491号

2024

磁共振成像
中国医院协会 首都医科大学附属北京天坛医院

磁共振成像

CSTPCD北大核心
影响因子:1.38
ISSN:1674-8034
年,卷(期):2024.15(6)
  • 1