首页|多模态MRI影像组学及深度学习在胶质瘤诊疗中的研究进展

多模态MRI影像组学及深度学习在胶质瘤诊疗中的研究进展

扫码查看
弥漫性胶质瘤是最常见的颅脑原发恶性肿瘤,术前精准分级、分子分型预测等对于制订适当的治疗策略和预测生存率具有至关重要的作用.影像组学使用高级特征分析从医学图像中提取数据并构建预测模型,捕捉病变微小的变化,从而提高临床诊断、评估预后和预测治疗反应的准确性.深度学习(deep learning,DL)可以从大量原始数据中自动学习和提取多层特征,而不是手工提取的浅层特征,由于DL已被充分证明能够准确地找到非常深入和抽象的特征,这使其成为医学图像分析领域中广泛研究的课题.随着计算能力的进步,基于DL的人工智能已经彻底改变了各个领域.本研究基于多模态MRI影像组学与DL在胶质瘤术前分级、分子分型、生存预测及治疗评价中的最新研究进行综述,以期为胶质瘤患者提供精准诊疗.
Research progress of multimodal MRI radiomics and deep learning in glioma
Diffuse gliomas are the most common primary malignant tumors of the brain,and preoperative precise grading and molecular typing prediction are crucial for developing appropriate treatment strategies and predicting survival rates. Imaging omics uses advanced feature analysis to extract data from medical images and construct predictive models to capture small changes in lesions,thereby improving the accuracy of clinical diagnosis,prognosis assessment,and treatment response prediction. Deep learning can automatically learn meaningful features for research,and can automatically learn and extract multi-layer features from a large amount of raw data,rather than manually made shallow features. As deep learning has been fully proven to accurately find very deep and abstract features,it has become a widely studied topic in the field of medical image analysis. With the advancement of computing power,deep learning based artificial intelligence has completely changed various fields. Promote the biological validation of radiomic features in gliomas. This study provides a review of the latest research on multimodal MRI radiomics and deep learning in preoperative grading,molecular typing,survival prediction,and treatment evaluation of glioma,with the aim of providing accurate diagnosis and treatment for glioma patients.

diffuse gliomamultimodalmagnetic resonance imagingradiomicsdeep learningprecise diagnosis and treatment

王茹、高阳

展开 >

内蒙古医科大学附属医院影像诊断科,呼和浩特 010050

弥漫性胶质瘤 多模态 磁共振成像 影像组学 深度学习 精准治疗

内蒙古自治区科技计划

2019GG047

2024

磁共振成像
中国医院协会 首都医科大学附属北京天坛医院

磁共振成像

CSTPCD北大核心
影响因子:1.38
ISSN:1674-8034
年,卷(期):2024.15(7)