首页|心脏磁共振评价慢性肾脏病患者不同左心室构型的心肌组织特征

心脏磁共振评价慢性肾脏病患者不同左心室构型的心肌组织特征

扫码查看
目的通过心脏磁共振(cardiac magnetic resonance,CMR)分析慢性肾脏病(chronic kidney disease,CKD)患者不同左心室构型的心肌应变、native T1值及T2值,研究CKD患者不同左心室构型的心肌组织特征.材料与方法前瞻性纳入CKD患者114例和年龄性别匹配的健康对照(对照组)30例.扫描序列包括心脏电影序列、T1 mapping及T2 mapping序列.根据左心室重构指数(left ventricular remodeling index,LVRI)和左心室质量指数(left ventricular mass index,LVMI)将患者分为左心室正常几何构型(n=43)、向心性重构(n=22)、向心性左心室肥厚(left ventricular hypertrophy,LVH)(n=20)和离心性LVH(n=29)共四组.利用心脏后处理软件CVI 42测量受试者的左心室心肌应变及应变率,包括周向、径向和纵向的整体应变、收缩期整体应变率、舒张期整体应变率,以及native T1值和T2值.分析不同左心室构型患者的心肌组织特征.采用单因素和多因素线性回归分析探讨左心室心肌应变参数、native T1值及T2值与生理变量的关系.结果除左心室正常构型组的整体周向应变[−18.40%(3.30%)vs.−19.71%±1.66%,P=0.063]、整体径向应变(30.63%±7.03%vs.34.07%±4.61%,P=0.324)与对照组差异无统计学意义,CKD患者的其余心肌应变参数显著低于对照组(P均<0.05).应变分析结果显示离心性LVH组的整体径向应变(22.02%±8.31%)最低;向心性LVH组的整体周向应变(−14.42%±3.24%)和整体纵向应变(−9.55%±2.79%)最低.应变率分析结果显示离心性LVH组的收缩期整体周向应变率[(−0.84±0.25)s−1]、舒张期整体周向应变率[(0.73±0.29)s−1]、收缩期整体径向应变率[(1.25±0.46)s−1]和舒张期整体径向应变率[(−1.18±0.50)s−1]最低;向心性LVH组的收缩期整体纵向应变率[(−0.62±0.16)s−1]和舒张期整体纵向应变率[(0.53±0.14)s−1]最低.向心性重构组的native T1值与对照组差异无统计学意义[1285.50(85.25)ms vs.(1262.53±38.18)ms,P=0.083];离心性LVH组的native T1值最大,显著高于对照组[(1351.10±58.49)ms vs.(1262.53±38.18)ms,P<0.001].与对照组相比,四个患者组的T2值均显著升高(P均<0.05),离心性LVH组的T2值[(54.86±8.71)ms]最大.不同组CKD患者的T2值差异无统计学意义(P均>0.05).Native T1值的独立决定因素是血红蛋白含量(校正的R2=0.216,β=−0.442,P<0.001)和血清肌酐(校正的R2=0.216,β=−0.220,P=0.010).结论CKD患者的心肌应变降低、native T1值及T2值增加,离心性LVH患者的心肌组织特征改变最明显.
Cardiac magnetic resonance evaluation of myocardial tissue characterization of different left ventricular phenotypes in patients with chronic kidney disease
Objective:To analyze the myocardial strain,native T1 and T2 values of different left ventricular phenotypes in chronic kidney disease (CKD) patients by cardiac magnetic resonance (CMR),and to investigate the myocardial tissue characterization of different left ventricular phenotypes. Materials and Methods:Prospective inclusion of 114 CKD patients and 30 age-and gender-matched healthy controls (control group). The scanning sequences included cardiac cine,T1 mapping and T2 mapping sequences. According to the left ventricular remodeling index (LVRI) and left ventricular mass index (LVMI),CKD patients were divided into the following four subgroups:normal geometry (n=43),concentric remodeling (n=22),concentric left ventricular hypertrophy (LVH) (n=20),and eccentric LVH (n=29). Cardiac post-processing software CVI 42 was used to measure left ventricular myocardial strain and strain rate,including global circumferential,radial and longitudinal strain,systolic global circumferential,radial and longitudinal strain rate,diastolic global circumferential,radial and longitudinal strain rate. Native T1 and T2 values were also measured. The myocardial tissue characterization of different left ventricular phenotypes was investigated. Univariate and multivariate linear regression analyses were used to explore the relationship between myocardial tissue characterization and physiological variables. Results:Except for global circumferential strain[−18.40% (3.30%) vs. −19.71%±1.66%,P=0.063]and global radial strain (30.63%±7.03% vs. 34.07%±4.61%,P=0.324) in normal geometry group,other myocardial strain parameters in CKD patients were significantly lower than those in control group (all P<0.05). Strain analysis showed that the lowest global radial strain (22.02%±8.31%) was found in the eccentric LVH group. The lowest global circumferential strain (−14.42%±3.24%) and global longitudinal strain (−9.55%±2.79%) were found in the concentric LVH group. Strain rate analysis showed that eccentric LVH group had the lowest systolic global circumferential strain rate[(−0.84±0.25) s−1],diastolic global circumferential strain rate[(0.73±0.29) s−1],systolic global radial strain rate[(1.25±0.46) s−1]and diastolic global radial strain rate[(−1.18±0.50) s−1]. Concentric LVH group had the lowest systolic global longitudinal strain rate[(−0.62±0.16) s−1]and diastolic global longitudinal strain rate[(0.53±0.14) s−1]. There was no significant difference in native T1 values between concentric remodeling group and control group[1285.50 (85.25) ms vs. (1262.53±38.18) ms,P=0.083]. Eccentric LVH group had the largest native T1 value,which was significantly higher than that of control group[(1351.10±58.49) ms,vs. (1262.53±38.18) ms,P<0.001). Compared with control group,T2 values were significantly increased in all four patient subgroups (all P<0.05),and the T2 value[(54.86±8.71) ms]of eccentric LVH group was the largest. There was no significant difference in T2 values among different subgroups of CKD patients (all P>0.05). Native T1 value was independently correlated with hemoglobin content (adjusted R2=0.216,β=−0.442,P<0.001) and serum creatinine (adjusted R2=0.216,β=−0.220,P=0.010). Conclusions:CKD patients have decreased myocardial strain and increased native T1 and T2 values. The changes of myocardial tissue characterization are most obvious in patients with eccentric LVH.

chronic kidney diseasemagnetic resonance imagingT1 mappingfeature tracking technologymyocardial strainleft ventricular hypertrophyleft ventricular phenotypes

蒲倩、杨慧义、彭鹏飞、岳汛、岳书婷、邓巧、唐露、吴韬、于洋、付平、余少斌、孙家瑜

展开 >

四川大学华西医院放射科,成都 610041

川北医学院附属医院放射科,南充 637000

四川大学华西医院肾脏内科,成都 610041

慢性肾脏病 磁共振成像 T1 mapping 特征追踪技术 心肌应变 左心室肥厚 左心室构型

四川省科技计划

2020YFS0123

2024

磁共振成像
中国医院协会 首都医科大学附属北京天坛医院

磁共振成像

CSTPCD北大核心
影响因子:1.38
ISSN:1674-8034
年,卷(期):2024.15(8)