首页|基于深度学习的T2 Flair序列提升白质高信号图像质量的价值

基于深度学习的T2 Flair序列提升白质高信号图像质量的价值

扫码查看
目的 探讨基于深度学习重建(deep learning reconstruction,DLR)算法的T2液体衰减反转恢复(fluid-attenuated inversion recovery,Flair)序列在提升白质高信号(white matter hyperintensity,WMH)图像质量中的应用价值.材料与方法 前瞻性纳入临床怀疑脑缺血性疾病的患者50例.对患者分别行常规T2 Flair序列和基于DLR算法的高分辨T2 Flair序列扫描.其中DLR Flair序列选择保留未经DLR处理而采用常规重建算法的预处理图像(记为Pre-DLR).采用4分法对三组图像从图像锐利度、灰-白质对比度、脑脊液-脉络丛对比度、WMH显示以及整体图像质量五个方面进行主观评分;比较三组图像中WMH的检出数目和WMH的信噪比(signal-to-noise ratio,SNR)、对比噪声比(contrast-to-noise ratio,CNR).结果 主观评价中,DLR组图像在图像锐利度、灰-白质对比度、脑脊液-脉络丛对比度、WMH显示以及整体图像质量的各项评分中均高于常规组和Pre-DLR组(P均<0.05);在WMH的计数方面,DLR组识别出的数量大于常规组(P<0.05)而与Pre-DLR组差异无统计学意义.客观评价中,DLR组的WMH的SNR和CNR均高于常规组和Pre-DLR组(P均<0.05).结论 与常规序列相比,结合DLR算法的高分辨T2 Flair序列可以实现在不增加扫描时间的前提下提高WMH图像质量、发现更多WMH微小病灶.
Value of T2 Flair sequence based on deep learning in improving image quality of white matter hyperintensities
Objective:To explore the application value of T2 fluid-attenuated inversion recovery(Flair)sequence based on deep learning reconstruction(DLR)algorithm in improving the image quality of white matter hyperintensities(WMH).Materials and Methods:Fifty patients with suspected cerebral ischemic disease were prospectively recruited.Both the conventional T2 FLAIR sequence and the high-resolution T2 Flair sequence,utilizing the DLR algorithm,were conducted on the patients.The DLR Flair sequence selected for this study retained the pre-processed images that have undergone conventional reconstruction algorithms without DLR processing(referred to as Pre-DLR).Subjective evaluations were performed on three groups of images using a 4-point scale to assess image sharpness,gray-white matter contrast,cerebrospinal fluid-choroid plexus contrast,WMH display,and overall image quality.Comparisons were made between the number of WMH detections,the signal-to-noise ratio(SNR)and contrast-to-noise ratio(CNR)of WMH in three sets of images.Results:In the subjective evaluation,the DLR group of images scored higher than the conventional group and Pre-DLR group in terms of image sharpness,gray-white matter contrast,cerebrospinal fluid-choroid plexus contrast,WMH display,and overall image quality(all P<0.05).In terms of WMH counting,the DLR group identified a higher number of WMHs than the conventional group(P<0.05),while there was no statistical difference with the Pre-DLR group.In the objective evaluation,the DLR group showed higher SNR and CNR of WMH compared to the conventional group and Pre-DLR group(all P<0.05).Conclusions:Compared to conventional sequences,the high-resolution T2 Flair sequence combined with the DLR algorithm can improve WMH image quality and detect more subtle WMH lesions without increasing scan time.

white matter hyperintensitiesmagnetic resonance imagingdeep learningreconstruction algorithmhigh resolutionimage quality

赵如盛、徐露露、李青、徐义程、张久楼、荣凡令

展开 >

南京医科大学第一附属医院放射科,南京 210029

西门子医疗系统有限公司,上海 200126

脑白质高信号 磁共振成像 深度学习 重建算法 高分辨率 图像质量

2024

磁共振成像
中国医院协会 首都医科大学附属北京天坛医院

磁共振成像

CSTPCD北大核心
影响因子:1.38
ISSN:1674-8034
年,卷(期):2024.15(11)