首页|基于高光谱数据的秦岭病害松提取研究

基于高光谱数据的秦岭病害松提取研究

扫码查看
本文针对高光谱影像数据量大、信息冗余严重影响秦岭病害松提取效果的问题,提出一种优化子空间划分的高光谱影像的集成分类方法.该方法利用均方差、贾弗里斯-松下(J-M)距离优化子空间划分算法,选取出高光谱影像中的最优波段,并将其输入由人工神经网络、支持向量机、最大似然法组成的集成分类器,提取林地中的病害松图斑.试验结果表明,10个最优波段组合集成分类可在保持影像光谱特征的同时降低数据维度,分类总精度达到97.75%,既能够精选出对病害松提取起关键作用的波段,又能弥补单个分类器的不足.
Extraction of diseased pine in Qinling Mountains based on hyperspectral data
This paper proposes an integrated classification method for hyperspectral images that optimizes subspace partitioning to address the problem of poor extraction efficiency of Qinling disease pine caused by the large amount of hyperspectral image data and severe information redundancy.This method uses mean square error and Jeffreys-Matusita(J-M)distance to optimize subspace partitioning algorithms to select the optimal band in hyperspectral images.By inputting the optimal band into an ensemble classifier composed of artificial neural networks,support vector machines,and maximum likelihood methods,the diseased pine patches in forest land are extracted.The experimental results show that the ensemble classi-fication of 10 optimal band combinations can reduce the data dimension while maintaining the spectral features of the image,with a total classification accuracy of 97.75%.It can not only select the bands that play a key role in extracting disease pine,but also make up for the shortcomings of a single classifier.

hyperspectralband selectionauto-subspace partitioncombining multiple classifier

张雅洁

展开 >

自然资源部第一大地测量队 陕西西安 710054

高光谱 波段选择 自动子空间划分 集成分类器

陕西省测绘地理信息局科技创新项目

SCK2021-06

2024

测绘标准化
国家测绘局测绘标准化研究所

测绘标准化

影响因子:0.407
ISSN:
年,卷(期):2024.40(1)
  • 18