首页|基于最优光谱指数构建比叶质量反演模型

基于最优光谱指数构建比叶质量反演模型

扫码查看
比叶质量(LMA)是植物叶片最基础的功能性状,与植物的许多生理反应密切相关,植物叶片干物质含量快速、准确估测对监管作物长势及健康状况具有重要意义.本文选取lopex93数据库中330条样本数据,构建典型光谱指数差值指数(DI)、比值指数(RI)、归一化植被指数(NDVI)、修正归一化指数(mNDI)、修正简单比值指数(mSR)这5种典型的光谱特征指数,采用相关矩阵法,提取不同LMA下敏感性高的波段特征组合.再采用线性回归构建反演模型,采用决定系数(R2)、均方根误差(RMSE)对模型进行评价.结果表明,由RI(1 870,2 280)、NDVI(1 870,2 274)、mSR(1 874,2281)三个特征光谱指数构成的变量输入组合最优,单变量相关性均大于0.8,模型R2达到0.784,RMSE最小,为0.001 2.这表明模型精度较高,可为大面积监测叶片的比叶质量提供参考.
Construction of LMA retrieval model based on optimal spectral index
Leaf mass per area(LMA)is the most fundamental functional trait of leaves,closely related to many physiological responses of plants.The rapid and accurate estimation of driness in plant leaves is of great significance for monitoring crop growth and health.This paper selects 330 sample data from the lopex93 database to construct the following five typical spectral feature indices,namely Difference Index(DI),Ratio Index(RI),Normalized Difference Vegetation Index(NDVI),Modified Normalized Difference Index(mNDI),and Modified Simple Ratio(mSR),extracts highly sensitive band feature combinations under different LMAs by using correlation matrix method,constructs an inversion model by using linear regression,and evaluates the model by using the coefficient of determination(R2)and Root Mean Square Error(RMSE).The results showed that the variable input combination composed of three characteristic spectral indices,namely RI(1 870,2 280),NDVI(1 870,2 274),and mSR(1 874,2 281)was the optimal.The univariate correlation was greater than 0.8,and the model determination co-efficient is 0.784,the smallest root mean square error is up to 0.001 2.It indicates that the model has high accuracy and can provide useful reference for large-scale monitoring of LMA.

hyperspectral remote sensingLMAestimating modelspectral characteristic index

付智华、李爱国

展开 >

吕梁学院 山西吕梁 033000

河南理工大学测绘与国土信息工程学院 河南焦作 454000

高光谱遥感 比叶质量 估算模型 光谱特征指数

2024

测绘标准化
国家测绘局测绘标准化研究所

测绘标准化

影响因子:0.407
ISSN:
年,卷(期):2024.40(3)