首页|GKPA-联合全局与关键区域的光学-SAR中分辨率遥感影像场景分类

GKPA-联合全局与关键区域的光学-SAR中分辨率遥感影像场景分类

扫码查看
遥感影像场景分类是自然灾害检测和城市功能规划等实际应用的基础,因此研究遥感影像场景分类具有重要意义.基于深度学习的方法由于其强大的特征提取能力已经成为遥感影像场景分类领域最常用的方法,此类方法强烈依赖数据集的质量.现阶段场景分类领域的数据集大多为高分辨率的光学影像,易于提取有效的语义特征.在面对中分辨率场景时,影像中细节信息更匮乏,有效特征不够显著,场景分类具有更大难度,相较于高分辨率场景分类精度不够理想.在此情况下,利用其他模态的数据如合成孔径雷达(SAR)提供互补特征可以有效改善场景分类精度.考虑到以上现状,本文构建光学-SAR遥感影像场景分类数据集(OS-RSISC),基于此数据集进一步提出了一个联合全局与关键区域的感知注意力双模态场景分类框架(GKPA-RSSC).实验结果显示 GKPA-RSSC 相较于对比方法具有最高的分类精度,总体精度达 81.97%.光学-SAR数据与单模态数据的对比试验结果突显双模态数据的优势,进而验证了本文提出的光学-SAR场景分类数据集的重要意义.
GKPA-Integrating global and key region for Optical-SAR medium resolution remote sensing image scene classification
Remote sensing image scene classification is the basis for practical applications such as natural disaster detection and urban function planning.Therefore,it is of great significance to study remote sensing image scene classification.Deep learning-based methods have become the most commonly used methods in the field of remote sensing image scene classification due to their powerful feature extraction capabilities.Such methods strongly rely on the quality of the data set.At present,most of the data sets in the field of scene classification are high-resolution optical images,which are easy to extract effective semantic features.When faced with medium-resolution scenes,the detailed information in the image is scarcer,the effective features are not significant enough,scene classification is more difficult,and the classification accuracy is not ideal compared with high-resolution scenes.In this case,using data from other modals such as synthetic aperture radar(SAR)to provide complementary features can effectively improve scene classification accuracy.Considering the above status quo,this paper constructed an optical-SAR remote sensing image scene classification data set(OS-RSISC),and based on this data set further proposed a perceptual attention dual-modal scene classification framework integrating global and key region(GKPA-RSSC).Experimental results show that GKPA-RSSC has the highest classification accuracy compared to comparing methods,with an overall accuracy of 81.97%.The comparative results of optical-SAR data and single-modal data verify the advantages of dual-modal data,and then verify the importance of the optical-SAR scene classification data set proposed in this article.

remote sensing image scene classificationdeep learningoptical-SAR datasetintegrating global and key areaperceptual attention mechanism

李杰、何国强、蒋梦辉、袁强强

展开 >

武汉大学 测绘学院,武汉 430079

武汉大学 资源与环境科学学院,武汉 430079

遥感影像场景分类 深度学习 光学-SAR数据集 联合全局与关键区域 感知注意力机制

2025

测绘工程
黑龙江工程学院 中国测绘学会

测绘工程

影响因子:1.78
ISSN:1006-7949
年,卷(期):2025.34(1)