首页|多尺度特征增强的街景绿色景观分割方法

多尺度特征增强的街景绿色景观分割方法

扫码查看
针对街景图像中景观复杂多样且多种景观相互遮挡,绿色景观分割效果存在相似景观错分、边界分割模糊、细节丢失等问题,提出一种多尺度特征增强的城市绿色景观分割网络.在编码部分改进多尺度残差网络提取上下文信息以区分相似景观,同时构建多级特征聚合增强模块增强目标特征的边缘细节信息.增加双注意力机制,在局部特征上建模丰富的上下文联系.最后,将多级特征聚合增强模块同样引入解码器,并融合多层级特征来提高目标信息的恢复能力完善边缘信息.在公共街景数据集Cityscapes与自制数据集 StreetData的消融实验表明,该网络与基础网络相比,平均交并比分别提高 2.96%和 5.57%.此外,在两个数据集上进行对比实验,该网络较对比模型平均交并比分别高 1.25%~5.29%和 1.52%~6.95%.定量分析与实验结果表明,该方法能够有效识别街景的绿色景观,实现高精度的城市绿色景观数据提取.
Multi-scale feature-enhanced method of green landscape segmentation for street views
To address the challenges arising from the complex and diverse nature of landscapes in street view images,such as misclassification,blurry boundary segmentation,and loss of details,we propose MFDNet,the Multi-Scale Feature-Enhanced Urban Green Landscape Segmentation Network.In the encoding stage,we utilize an improved multi-scale residual network to extract contextual information and distinguish between similar features.Concurrently,we introduce a feature enhancement module to improve the edge and detail information of target features.To capture rich contextual dependencies,we incorporate a dual-attention mechanism to model local features effectively.Moreover,we integrate the feature enhancement module into the decoder,allowing for the fusion of multi-level features to enhance the recovery of target information and refine edge details.Through ablation experiments conducted on the Cityscapes dataset and our homemade dataset StreetData,we demonstrate that MFDNet achieves an average improvement of 2.96%in intersection ratio and 5.57%in merger ratio compared to the base network.Furthermore,comparison experiments on the two datasets highlight the superior performance of MFDNet over the comparison model,exhibiting higher average intersection ratios of 1.25%~5.29%and merger ratios of 1.52%~6.95%.These experimental results confirm the effectiveness of MFDNet in accurately identifying green landscapes in street views and extracting urban green landscape data with high precision.

deep learningstreet viewmulti-scale feature enhancementurban green spacesemantic segmentation

程勇、王沂萱、任周鹏、王军、顾雅康

展开 >

南京信息工程大学 软件学院,南京 210044

中国科学院地理科学与资源研究所 资源与环境信息系统国家重点实验室,北京 100101

深度学习 街景图像 多尺度特征增强 城市绿色景观 语义分割

2025

测绘工程
黑龙江工程学院 中国测绘学会

测绘工程

影响因子:1.78
ISSN:1006-7949
年,卷(期):2025.34(1)