首页|基于PSO-BP神经网络的5G基站位置确定方法

基于PSO-BP神经网络的5G基站位置确定方法

扫码查看
5G基站位置的确定对室内定位服务和网络安全有着重要意义.首先对 5G信道状态信息 CSI进行 Hample滤波和降维,然后构建基于粒子群优化PSO的误差反向传播BP神经网络信号损耗模型,建立 5G CSI和距离的映射关系,最后基于模型预测的距离实现对 5GAP的探测.实验采用室外探测室外和室内 5GAP 的实测数据,结果表明,与BP神经网络相比,基于PSO-BP神经网络的距离预测值更加精确,室外探测室外和室内 5GAP的精度分别达到了 0.32m和 0.96m.随着测量方向数的提升,5GAP的定位精度不断提升.当方向数达到 5 个时,精度提升最为显著.
A method for 5G access point location determination based on PSO-BP neural network
The determination of the location of 5 G access points is of great significance for indoor positioning services and network security.This article first performs Hample filtering and dimensionality reduction on the state information of 5 G channels;then,a signal loss model based on Particle Swarm Optimization(PSO)for Back Propagation(BP)neural network was constructed,and the mapping relationship between 5 G CSI and distance was established;finally,the detection of 5 G AP is achieved based on the distance predicted by the model.The experiment used measured data from indoor detection of outdoor and indoor 5 G AP,and the results showed that compared with BP neural network,the distance prediction value based on PSO-BP neural network was more accurate.The accuracy of outdoor detection of outdoor and indoor 5 G AP reached 0.32m and 0.96m,respectively.As the number of measurement directions increases,the positioning accuracy of 5 G base stations continues to improve;when the number of directions reaches 5,the accuracy improvement is most significant.

channel state informationaccess point detectionparticle swarm optimizationback propagation neural network

杜莹、韦原原、蒲欢欢

展开 >

郑州师范学院 地理与旅游学院,郑州 450044

信道状态信息 AP探测 粒子群优化 BP神经网络

2025

测绘工程
黑龙江工程学院 中国测绘学会

测绘工程

影响因子:1.78
ISSN:1006-7949
年,卷(期):2025.34(1)