首页|基于深度学习的遥感影像建筑物变化检测系统实现

基于深度学习的遥感影像建筑物变化检测系统实现

扫码查看
针对传统遥感影像建筑物变化检测方法鲁棒性差且效率低下的问题,本文提出了一种基于深度学习的遥感影像建筑物变化检测方法.首先,利用DeepLab V3+语义分割方式提取不同时相影像中建筑物分割结果;其次,利用Canny算法提取二值化后的分割结果轮廓,构建矢量建筑物图层;最后,利用空间分析方法提取面状要素的差异部分,从而实现变化内容标注.为了给实际应用提供一种思路,本文对建筑物变化检测系统进行了设计与实现,阐述了其关键技术,并通过某建筑物提取实验,验证了DeepLab V3+算法分割建筑物的可行性及系统的可用性.
Implementation of building change detection system for remote sensing images based on deep learning
As to the problems of poor robustness and low efficiency by traditional building change detec-tion methods,a building change detection method for remote sensing images based on deep learning is proposed in this paper.Firstly,DeepLab V3+semantic segmentation is used by the method to extract the building segmentation results from the images in different phases.Secondly,Canny algorithm is used to extract the contours of the binarized segmentation results to construct vector building layers.Lastly,the spatial analysis method is used to extract the difference of the area to label the changed contents.The building change detection system is designed and implemented in this paper to provide an idea for apply-ing the method to practice,and the key technologies concerned are introduced.The feasibility of the DeepLab V3+algorithm to segment buildings and the applicability of the system are proved by a building extraction test.

deep learningsemantic segmentationbuilding extractioncontour extractionconvolution neural network

王俊强、陈锐、吴锋、张成

展开 >

31306部队,四川成都 610000

深度学习 语义分割 建筑物提取 轮廓提取 卷积神经网络

2024

测绘技术装备
国家测绘局测绘标准化研究所 全国测绘科技信息网

测绘技术装备

影响因子:0.379
ISSN:1674-4950
年,卷(期):2024.26(2)
  • 3