首页|基于旋转框与位置注意力的无人机影像目标检测方法

基于旋转框与位置注意力的无人机影像目标检测方法

扫码查看
针对无人机影像背景复杂、地面目标尺寸跨度较大且角度各异等问题,本文提出了一种基于YOLOv5模型与带有旋转角度的目标框(OBB)损失函数的无人机影像目标检测方法.首先,在主干网络中加入位置注意力模块(PAM),让模型更专注于学习正样本的纹理特征;其次,在特征增强网络中输出更大尺寸特征图,进一步增强对小目标的检测能力;再次,为更精准检出多角度目标,在输出端引入旋转框定位损失函数;最后,为增加样本数量并扩充训练集多样性,对训练集进行了增广处理.试验结果表明,基于旋转框与位置注意力模型(PAM-OBB-YOLOv5)在平均精度均值(mAP)上较YOLOv5模型提高了8.3%,在多种复杂环境中表现出良好的泛化能力,且该模型每秒检测影像帧数(FPS)达到32帧,能进行实时级检测结果输出.
Object detection method for UAV image based on rotation frame and position attention
As to the problems of complex UAV imaging background,large ground target size and different angles,object detection method for UAV image based on YOLOv5 model and oriented bounding box(OBB)mechanism was proposed in this paper.Firstly,the position attention module is added to the backbone network to make the model focusing on learning the texture features of positive samples.Secondly,a larger feature map is output in the feature enhancement network to further enhance the de-tection ability of small objects.Thirdly,the object frame positioning loss function with rotation angle is introduced at the output end in order to detect multi-angle objects more accurately.Finally,the training set is expanded to increase the number of samples and expand the diversity of the training set.The ex-perimental results show that the improved model improves the mean average precision(mAP)by 8.3%compared with the original model,and it has good generalization in a variety of complex environments,which is significantly superior to the current mainstream deep learning methods.Moreover,the FPS of the improved YOLOv5 model is 32 frames per second,and it can output detection results in real time.

UAV imagesobject detectionYOLOv5 modelposition attention moduleoriented bounding box

黄雪亭、燕立爽、卞磊、樊秋茸

展开 >

济南市勘察测绘研究院,山东济南 250000

陕西中量测绘科技有限公司山东分公司,山东济南 250000

无人机影像 目标检测 YOLOv5模型 位置注意力模块 旋转框

2024

测绘技术装备
国家测绘局测绘标准化研究所 全国测绘科技信息网

测绘技术装备

影响因子:0.379
ISSN:1674-4950
年,卷(期):2024.26(3)