首页|基于决策树的漓江上游土地覆盖分类

基于决策树的漓江上游土地覆盖分类

扫码查看
针对山区植被分类受地形复杂、植被类型多样、验证数据获取困难等因素限制基于多光谱数据的亚热带山区土地利用/覆盖分类存在困难,探究利用物候信息对亚热带山区植被实施分类的效果.综合运用归一化植被指数(NDVI)、比值植被指数(RVI)、归一化水指数(NDWI),同时考虑到海拔高度对植被类型的影响,建立决策树模型.该模型基于多时相Landsat TM影像,利用了不同地物类型的物候特征和光谱差异,将漓江上游地区分为8种土地覆盖类型.实验结果表明,分类结果总体精度达到86.40%,Kappa系数为0.83.
Classification of land cover in upstream of Lijiang river basin based on decision tree technologies
Aiming at the problem that it is difficult for Land use/cover classification with multispectral data in subtropical mountainous areas due to the complex terrain,various vegetation types,and hard validation of data acquisition,the paper discussed to classify the subtropical vegetation in the mountains by using phenologic information:algorithms of Normalized Difference Vegetation Index (NDVI),Ratio Vegetation Index (RVI),and Normalized Difference Water Index (NDWI)were integrated,and a Decision Tree model was built considering the influence of altitude on vegetation type distribution,which used the phenological and spectral characteristics of different land cover types to classify the upstream of Lijiang river basin into eight land cover types with multi temporal Landsat TM imagery.Result showed that compared with existed methods,the classification accuracy would be improved higher with an overall accuracy of 86.40% and Kappa coefficient 0.83.

upstream of Lijiang river basindecision treephenologyland use/cover

张熙、鹿琳琳、王萍、周春艳、冀婷婷

展开 >

山东科技大学测绘科学与工程学院,山东青岛266590

中国科学院遥感与数字地球研究所数字地球重点实验室,北京100094

环境保护部卫星环境应用中心,北京100094

漓江上游 决策树 物候 土地利用/覆盖

国家自然科学基金国家科技支撑计划

414713692012BAC16B01

2016

测绘科学
中国测绘科学研究院

测绘科学

CSTPCDCSCD北大核心
影响因子:0.774
ISSN:1009-2307
年,卷(期):2016.41(3)
  • 4
  • 6