首页|联合VMD和Bi-LSTM的GNSS坐标时序降噪

联合VMD和Bi-LSTM的GNSS坐标时序降噪

扫码查看
针对GNSS坐标时间序列中的噪声难以有效去除等问题,构建了一种联合变分模态分解和双向长短期记忆模型的方法用以去除GNSS坐标时间序列中的噪声.将GNSS坐标时间序列分解为k个本征模态函数分量,并根据样本熵选择出有效的模态分量,分别通过双向长短期记忆网络处理,最后将信号进行合成.以BJFS等12个具有较长时间序列且数据完整性较好的GNSS站点坐标数据为例,对坐标时间序列进行降噪.将该方法与传统的分解方法进行对比分析,发现在E、N、U方向上,相比于单一变分模态分解,速度不确定度改正率分别提高了11.03%、4.60%、7.39%,相比于经验模态分解分别提高了31.70%、27.70%、24.42%.结果表明该方法能够更好地去除信号中的噪声,且优于传统分解方法,可提高信号可靠性.
GNSS coordinate time series noise reduction combined with VMD and Bi-LSTM
For the problem that noise in GNSS coordinate time series is difficult to be effectively removed,this paper constructs a joint variational mode decomposition and bidirectional long short-term memory model to remove noise in GNSS coordinate time series. Firstly,the GNSS coordinate time series is decomposed into k eigenmode function components,and the effective modal components are selected according to the sample entropy,and then processed by the bidirectional long and short term memory network respectively. Finally,the signals are synthesized. Taking the coordinate data of 12 GNSS stations such as BJFS with long time series and good data integrity as an example,the coordinate time series is denoised. Compared with the traditional decomposition method,it is found that in the E,N and U directions,the correction rate of velocity uncertainty is increased by 11. 03%,4. 60% and 7. 39%,respectively,compared with the single variational mode decomposition,and by 31. 70%,27. 70% and 24. 42%,respectively,compared with the empirical mode decomposition. The results show that this method can remove the noise in the signal better than the traditional decomposition method,and can improve the reliability of the signal.

GNSS coordinate time seriesvariational mode decompositionbidirectional long short-term memorysample entropysignal denoising

刘逸夫、徐克科、郭增长、张子豪

展开 >

河南理工大学 测绘与国土信息工程学院,河南 焦作 454003

河南测绘职业学院,郑州 451464

GNSS坐标时间序列 变分模态分解 双向长短期记忆 样本熵 信号降噪

国家自然科学基金项目

41774041

2024

测绘科学
中国测绘科学研究院

测绘科学

CSTPCD北大核心
影响因子:0.774
ISSN:1009-2307
年,卷(期):2024.49(1)
  • 26