首页|融合注意力机制的改进Mask-RCNN遥感影像建筑物提取

融合注意力机制的改进Mask-RCNN遥感影像建筑物提取

扫码查看
针对复杂影像背景和密集建筑物堆叠导致建筑物提取效果不完整,存在误检、漏检等问题,提出了一种改进Mask-RCNN遥感影像建筑物提取方法.利用双通道注意力机制增强目标的有效特征,同时引入特征增强金字塔网络增强网络对遥感影像的上下文特征信息地提取能力,结合双通道下采样模块减少特征损失,提高模型提取的精度和效率.实验表明,提出的改进Mask-RCNN在建筑物数据集和RSOD数据集上,与多种方法进行实验对比验证,Precision和F1值均高于对比方法,且目标识别的结果更加完整,目标漏检率更低.
Improved Mask-RCNN remote sensing image building extraction by fusion attention mechanism
This paper proposes an improved Mask-RCNN remote sensing image building extraction method to address the issues of incomplete building extraction,error detections,and missed detections caused by complex image backgrounds and dense building stacking. Using a dual channel attention mechanism to enhance the effective features of the target,and introducing a feature enhancement pyramid network to enhance the network's ability to extract contextual feature information from remote sensing images. Finally,combining the dual channel downsampling module to reduce feature loss and improve the accuracy and efficiency of model extraction. The experiment shows that the improved Mask-RCNN proposed in this paper is compared and validated with multiple methods on the building dataset and RSOD dataset. The Precision and F1 values are higher than the comparison method,and the target recognition results are more complete,with a lower target miss rate.

dual channel attention mechanismimproved Mask-RCNNmulti-scale feature pyramidbuilding extractionremote sensing image

李健、庞留记、吴浩、王心宇

展开 >

郑州大学 地球科学与技术学院,郑州 450000

华中师范大学 城市与环境科学学院,武汉 430000

双通道注意力机制 改进Mask-RCNN网络 多尺度特征金字塔 建筑物提取 遥感影像

国家自然科学基金面上项目

42241759

2024

测绘科学
中国测绘科学研究院

测绘科学

CSTPCD北大核心
影响因子:0.774
ISSN:1009-2307
年,卷(期):2024.49(1)
  • 13