首页|面向地理流的双变量时空扫描统计方法

面向地理流的双变量时空扫描统计方法

扫码查看
针对现有的地理流双变量异常聚类方法忽视了时间维度的问题,提出面向地理流的双变量时空扫描统计方法.先构建面向地理流的多尺度时空扫描窗口;通过伯努利模型下的扫描统计量检测窗口中是否存在异常流簇,采用蒙特卡洛模拟方法检验扫描统计量的统计显著性;筛选一系列时空分布无重叠的异常流簇.应用该方法识别厦门市网约车流和巡游车流的时空异常流簇,以发现两类出租车竞争模式的时空格局.结果表明:巡游车流占优簇常发生在凌晨,分布在娱乐、餐饮、住宿等场所;网约车流占优簇常发生在上午或傍晚,分布在办公地点与居住地之间.该方法挖掘的结果能够发现异常流簇准确的时空分布特征,可为城市交通规划提供支持.
A bivariate spatiotemporal scan statistics method for geographical flows
In response to the problem that existing bivariate anomaly clustering methods for geographic flows overlook the temporal dimension,this article proposes a bivariate spatiotemporal scan statistics method for geographical flows. Firstly,multi-scale spatiotemporal scanning windows for geographical flows are constructed. Secondly,the scan statistics of Bernoulli model are used to detect anomalous flow clusters in the spatiotemporal scanning window. Thirdly,the Monte Carlo simulation method is used to test the statistical significance of the scan statistics. Finally,a series of bivariate anomalous flow clusters with non-overlapping spatiotemporal distributions are screened. The method proposed in this paper is applied to the detect spatiotemporal anomalous flow clusters of ride-hailing flows and taxi flows in Xiamen City. The results show that the proposed method can reveal the spatiotemporal pattern of the competition mode between taxi flows and ride-hailing flows. The spatiotemporal anomalous clusters in which taxi flows occupy competitive advantages often occur in entertainment,catering and homestays places in the wee hours;The spatiotemporal anomalous clusters in which ride-hailing flows occupy competitive advantages often occur in offices and residences in the morning or evening. The presented method can identify the accurate spatiotemporal distribution of the anomalous clusters,which can provide support for optimizing the allocation of traffic resources.

geographical flowsbivariate anomalous flow clustersspatiotemporal scan statisticsspatiotemporal distribution differences

王钰辉、阳孟杰、周梦杰、周楷淳

展开 >

湖南师范大学 地理科学学院,长沙 410081

地理空间大数据挖掘与应用湖南省重点实验室,长沙 410081

湖南师范大学 "城乡转型过程与效应"重点实验室,长沙 410081

地理流 双变量异常流聚类 时空扫描统计 时空分布差异

国家自然科学基金项目湖南省自然科学基金湖南省教育厅科学研究项目湖南省教育厅科学研究项目

419013142023JJ4044722C001823B0093

2024

测绘科学
中国测绘科学研究院

测绘科学

CSTPCD北大核心
影响因子:0.774
ISSN:1009-2307
年,卷(期):2024.49(1)
  • 32