首页|融合高分辨率影像与LiDAR的孪生对抗协同分类算法

融合高分辨率影像与LiDAR的孪生对抗协同分类算法

扫码查看
针对传统多模态协同分类算法在异构特征表征方面的局限性,提出一种基于孪生协同注意力对抗网络(MCA2Net)的分类算法,用于高分辨率遥感影像和LiDAR数据的融合分类.MCA2Net首先设计多尺度特征提取和多注意力机制模块,结合对抗博弈过程有效提取高阶语义特征与差异化互补信息,实现多模态数据细节特征判别性保留;同时融合对抗与分类任务构建复合损失函数进行协同训练,平衡无监督图像融合任务与监督分类任务,实现模型稳定性提升.基于Houston与云南山地数据集实验结果表明:MCA2Net算法能有效提升多模态数据的协同分类性能,研究结果可应用于城市规划、环境监测与土地利用分类等领域.
Simese adversarial collaborative classification algorithm fusing high-resolution remote sensing and LiDAR
Multimodal data combination can effectively improve the accuracy of ground object classification.In view of the limitations of traditional multimodal collaborative classification algorithms in heterogeneous feature representation,this paper proposes a classification algorithm based on twin collaborative attention adversarial network(MCA2 Net),using for the fusion classification of high-resolution remote sensing images and LiDAR data.MCA2 Net first designed multi-scale feature extraction and multi-attention mechanism modules,combined with the adversarial game process to effectively extract high-order semantic features and differentiated complementary information,to achieve discriminative retention of detailed features of multi-modal data;at the same time,it integrated adversarial and classification tasks to build a composite loss functions are used for collaborative training to balance unsupervised image fusion tasks and supervised classification tasks to improve model stability.Experimental results based on the Houston and Yunnan-mountain data sets show that the MCA2N et al gorithm can effectively improve the collaborative classification performance of multi-modal data.The research results can be applied to urban planning,environmental monitoring,land use classification and other fields.

high-resolution remote sensingLiDAR datafeature fusionadversarial learningattention mechanism

崔杰瑞、普运伟、夏炎、饶闯江、陈如俊

展开 >

昆明理工大学国土资源工程学院,昆明 650500

云南省水利水电勘测设计院有限公司,昆明 650500

昆明理工大学计算中心,昆明 650500

高分辨率遥感 LiDAR数据 特征融合 对抗学习 注意力机制

2024

测绘科学
中国测绘科学研究院

测绘科学

CSTPCD北大核心
影响因子:0.774
ISSN:1009-2307
年,卷(期):2024.49(3)
  • 6