首页|多尺度测地线距离的点云划分方法

多尺度测地线距离的点云划分方法

扫码查看
针对三维点云目标通常具有复杂的多尺度非欧几里得空间结构,且无序排列、动态性强、难以高精度预测标签,当前的自注意力模块依赖点乘和矩阵转换运算,难以充分捕捉点云对象的多尺度非欧几里得结构等问题,提出了一种新的多尺度自注意力模块——基于测地线距离的多尺度点云划分(GMT),多尺度提取点云数据的非欧几何信息以增强表征能力.GMT在ModelNet40数据集上的整体准确度指标和类别平均准确度指标分别达到93.2%和90.5%;在ScanObjectNN数据集上的整体准确度指标和类别平均准确度指标分别达到82.5%和81.1%,与Point-TnT等其他主流方法相比取得了具有竞争力的结果.实验结果表明,GMT在一定程度上具有较强的非欧几何特征捕捉能力.
A multi-scale point cloud partitioning method by geodesic distance-based
Point cloud objects are typically composed of complex,unordered,non-Euclidean spatial structures and multi-scale features,often being dynamic and unpredictable.Current self-attention modules rely on dot products and matrix transformations,which make adequately capturing the multi-scale non-Euclidean structure of point cloud objects difficult.This paper proposes Geodesic-based Multi-scale point cloud partitioning Transformer(GMT),a new multi-scale self-attention module to solve the above issue,aiming to extract non-Euclidean geometric information from point clouds at multiple scales to enhance their representation capabilities.GMT achieved an overall accuracy of 93.2%and a mean accuracy of 90.5%on the ModelNet40 dataset.On the ScanObjectNN dataset,it achieved an overall accuracy of 82.5%and a mean accuracy of 81.1%.Compared to other mainstream methods such as Point-TnT,GMT yielded competitive results.Experimental results indicate that GMT possesses a strong capability to capture non-geometric features to some extent.

computer visionpoint cloud classificationgeodesic distancetransformer

陈万志、王牧宇、夏羽、汤璇、魏宪

展开 >

辽宁工程技术大学软件学院,辽宁葫芦岛 125105

上海宇航系统工程研究所,上海 201108

华东师范大学软硬件协同设计技术与应用教育部工程研究中心,上海 200241

计算机视觉 点云分类 测地线距离 Transformer

国家重点研发计划项目辽宁省教育厅高校科研基金项目

2018YFB14033032021LJKZ0327

2024

测绘科学
中国测绘科学研究院

测绘科学

CSTPCD北大核心
影响因子:0.774
ISSN:1009-2307
年,卷(期):2024.49(3)
  • 1