首页|一种改进DeepLab V3+的湿地信息提取方法

一种改进DeepLab V3+的湿地信息提取方法

扫码查看
针对湿地信息提取过程中存在的"椒盐现象"、分类精细程度及分类效率低的问题,提出了一种基于DeepLab V3+改进的M&E-DeepLab网络模型.该模型采用MobileNet V2作为DeepLabV3+网络的主干特征提取网络,以减少模型参数量、提高网络训练效率和训练精度.对空间金字塔池化(ASPP)模块中的3个并联的膨胀卷积支路进行逐层特征传递,以扩大感受野、提高信息利用率.在ASPP模块后引入通道注意力机制,对深层特征图进行通道特征加强,以提高网络分割性能.结果表明,该模型的总体精度为90.0%,Kappa系数为0.878.相较于原始DeepLab V3+和其他相关模型,该文模型在翅碱蓬湿地、芦苇湿地、混合湿地等地物类型的提取精度上均具有明显优势,在辽河湿地信息的提取方面具有较好的应用前景.
An improved DeepLab V3+for wetland mapping
In response to the issues of"salt-and-pepper phenomenon,"low degree of classification precision,and efficiency in wetland information extraction,this paper proposes an M&E-DeepLab network model,an improvement based on DeepLab V3+.Firstly,the model utilises MobileNet V2 as the backbone feature extraction network of DeepLabV3+,to reduce the model's parameter count,and enhance the network's training efficiency and accuracy.Secondly,it performs layer-by-layer feature transmission among the three parallel dilated convolution branches in the Atrous Spatial Pyramid Pooling(ASPP)module,to expand the receptive field and improve the efficiency of information utilisation.Lastly,a channel attention mechanism is introduced after the ASPP module to strengthen the channel features of deep feature maps,thereby enhancing the network's segmentation performance.The results show that the overall accuracy of the model is 90.0%,with a Kappa coefficient of 0.878.Compared to the original DeepLab V3+and other related models,this model demonstrates significant advantages in the extraction accuracy of various types of land such as Suaeda pterantha,Phragmites australis,and mixed wetlands.It has a promising application prospect in the extraction of information from the Liaohe wetland.

wetlands information extractLiaohe river wetlandDeepLab V3+semantic segmentationattention mechanismPanjin

贺晋杰、王昶、张文、王旭、郭贺、薛奇

展开 >

辽宁科技大学土木工程学院,辽宁鞍山 114051

辽宁科技学院资源与土木工程学院,辽宁本溪 117004

齐鲁空天信息研究院,济南 250101

辽宁冶金地质勘查局四○一队有限责任公司,大连 116600

展开 >

湿地信息提取 辽河湿地 DeepLab V3+ 语义分割 注意力机制 盘锦

辽宁省教育厅基本科研项目辽宁科技大学研究生科技创新项目辽宁科技学院博士科研启动金项目

LJKMZ20220638LKDYC2023362307B29

2024

测绘科学
中国测绘科学研究院

测绘科学

CSTPCD北大核心
影响因子:0.774
ISSN:1009-2307
年,卷(期):2024.49(3)
  • 8