首页|无监督学习的合成孔径雷达图像去噪

无监督学习的合成孔径雷达图像去噪

扫码查看
针对传统深度学习的SAR图像去噪方法中需要大量标记数据进行监督训练的挑战,提出了一种新的无监督SAR图像去噪方法.利用循环一致生成对抗网络,将SAR图像去噪问题转化为非配对图像到图像的转换任务,从而绕开了对地面真实标记数据的依赖.实验结果表明:所提方法不仅能有效地抑制SAR图像中的噪声,还能学习生成逼真的一对多特性的SAR图像噪声,且不依赖于数据模拟或对噪声分布的假设.所提出的方法在SAR图像处理领域具有潜在的应用前景,为解决SAR图像去噪问题提供了 一种有效且无监督学习的新途径.
Unsupervised learning for synthetic aperture radar image despeckling
Addressing the challenge of traditional deep learning-based SAR image despeckling methods requiring a large amount of annotated data for supervised training,this paper proposes a novel unsupervised SAR image despeckling approach.Leveraging the capability of cycle-consistent generative adversarial networks,the despeckling problem is transformed into an unpaired image-to-image translation task,thus bypassing the reliance on ground truth labeled datas.Experimental results demonstrate that this method is not only effective in suppressing speckle in SAR images but also capable of learning to generate realistic SAR image speckle with one-to-many characteristics,without dependence on data simulation or assumptions about the speckle distribution.The proposed approach holds promising potential applications in the field of SAR image processing,offering an effective and unsupervised learning-based solution to SAR image despeckling.

synthetic aperture radardespecklingdeep learningconvolutional neural networkgenerative adversarial network

徐维

展开 >

辽宁工程技术大学电子与信息工程学院,辽宁葫芦岛 125000

合成孔径雷达 去噪 深度学习 卷积神经网络 生成对抗网络

国家自然科学基金项目

61971210

2024

测绘科学
中国测绘科学研究院

测绘科学

CSTPCD北大核心
影响因子:0.774
ISSN:1009-2307
年,卷(期):2024.49(5)