首页|顾及颜色及纹理特征的孪生神经网络航空影像密集匹配

顾及颜色及纹理特征的孪生神经网络航空影像密集匹配

扫码查看
针对影像中重复/弱纹理区域的影像高效匹配问题,提出了一种基于深度孪生神经网络的航空立体影像自适应密集匹配方法.以孪生神经网络为基础,构建一种基于图像块逐像素平移匹配思想的立体影像密集匹配深度神经网络模型,对两条分支网络输入的左右影像提取特征向量并进行内积得到匹配代价体积,以计算各像素点的视差值;利用地物的颜色与纹理特征对视差结果进行自适应优化,以对建筑物边缘、遮挡等区域的误匹配情况进行约束,提高了预测结果的可靠程度,有效避免误匹配.使用公开的立体影像数据集对算法进行验证,实验结果表明,在不依赖GPU的情况下,算法产生的视差图更平滑,匹配精度比传统方法提高了 30%以上.
Dense matching of aerial image based on deep siamese network considering color and texture features
Considering the problem of efficient image matching in image regions with repetitive or weak texture,the paper proposes an adaptive dense matching method for aerial stereo images based on deep Siamese network.A deep neural network model for stereo image dense matching is constructed using the concept of pixel-by-pixel translation matching within the framework of a siamese neural network.The feature vectors extracted from the left and right input images by two branch networks are used to obtain a matching cost volume and calculate the parallax value for each pixel.Subsequently,adaptive optimization of the parallax results is performed using color and texture features of ground objects to constrain mismatches in building edges,occlusions,and other areas,thereby enhancing prediction reliability and effectively avoiding mismatching.Finally,the proposed algorithm is validated using publicly available stereo image datasets.Experimental results demonstrate that our algorithm yields superior and smoother parallax maps compared to classical methods with over 30%improvement in matching accuracy without relying on GPU.

aerial stereo imagedense matchingsiamese networktexture featuresdisparity map

赵立科、张帮、张卡、余冰鑫、王玉军、李旋、宿东、张燕平

展开 >

江苏省地质调查研究院,南京 210018

自然资源江苏省卫星应用技术中心,南京 210018

苏州市消防救援支队,江苏苏州 215000

虚拟地理环境教育部重点实验室(南京师范大学),南京 210023

南京师范大学地理科学学院,南京 210023

江苏省地理信息资源开发与利用协同创新中心,南京 210023

江苏省地理环境演化国家重点实验室,南京 210023

江苏省测绘产品质量监督检验站,南京 210013

展开 >

航空立体影像 密集匹配 孪生神经网络 纹理特征 视差图

国家自然科学基金项目国家自然科学基金项目江苏省自然资源科技计划项目江苏高校优势学科建设工程资助项目

42271342420713012023048164320H116

2024

测绘科学
中国测绘科学研究院

测绘科学

CSTPCD北大核心
影响因子:0.774
ISSN:1009-2307
年,卷(期):2024.49(5)