首页|三维点云数据微地形特征量的提取及应用研究

三维点云数据微地形特征量的提取及应用研究

扫码查看
针对一般地形特征量无法有效识别微地形特征量和小型地质灾害隐患的问题,在讨论不同常用地形特征量的基础上,提出了适用于激光雷达三维点云数据的微地形特征量的选取及其计算方法.微地形特征量分别选取地上开度、地下开度和坡度,配合特征值比,突出了与地质灾害具有高度非线性相关的地形凹凸特征,其高维度信息量可直接作为机器学习算法地形特征量的输入,降维下的特征量也可以在二维可视化下最大限度地保留地形的凹凸特征.研究结果表明,二维可视化后开度和坡度的融合可以清晰表达微地形的凹凸特征,特征值比可突出表达微地形凹凸变化的方向性特征.这些特征量对微地形条件下不同尺度地质灾害隐患的识别提供地形特征的有效数据支持.
Study on extraction of micro-terrain features from 3D point clouds and its application
Addressing the challenge of ineffective recognition of micro-terrain features and small-scale geological hazard risks by general terrain characteristics,this paper proposed a new extraction and computation method for micro-terrain features applicable to LiDAR 3D point cloud data,based on discussing various commonly used terrain features.The micro-terrain features,including positive openness,negative openness,and slope,along with eigenvalue ratio,are selected to emphasize the features of the topographic concave and convex that have the highly nonlinear correlation with geological hazards.The high-dimensional information can be directly employed as inputs for machine learning algorithms focusing on terrain features,while the reduced-dimensional features can maximize the preservation of convex and convex features in 2D visualizations.Results from the case studies indicate that the fusion of openness and slope in 2D visualizations can clearly represent the concave and convex features of micro-terrain,and the eigenvalue ratio can map directional characteristics of mass movement of micro-terrain.These features provide effective terrain feature data support for recognizing geological hazard risks at different scales under micro-terrain conditions.

micro-terrain featurespositive opennessnegative opennessslopeeigenvalue ratiogeological hazard

赵晓东、杨华、王曦阅

展开 >

大连大学建筑工程学院,辽宁大连 116622

大连大学辽宁省岩土与结构工程技术研究中心,辽宁大连 116622

微地形特征量 地上开度 地下开度 坡度 特征值比 地质灾害

2024

测绘科学
中国测绘科学研究院

测绘科学

CSTPCD北大核心
影响因子:0.774
ISSN:1009-2307
年,卷(期):2024.49(5)
  • 14