首页|局部全连接图编码的点云语义分割网络

局部全连接图编码的点云语义分割网络

扫码查看
针对大场景细粒度点云语义分割,提出一种基于局部全连接图编码的语义分割网络.通过采用基于局部全连接图描述的特征编码方法提高网络对邻域空间的特征提取能力,在此基础上,采用多组基于图扩张卷积块残差块实现更有效的特征聚合与增强.针对样本不平衡问题,采用基于反频率权重交叉熵作为损失函数,实现对样本不平衡的处理.基于SensatUrban数据集的实验表明:本文方法相比现有方法在多项指标中最优,证明在大场景细粒度语义分割方面的有效性与实用性.
Local fully connected graph-encoded semantic segmentation for point cloud
The fine-grained semantic information of large scenes is playing an important role in city-level 3D real scene construction.In this paper,we propose a local fully connected graph-encoded semantic segmentation network for point cloud.In the network,the local fully connected graph based encoder is used to improve the performance of feature learning in neighborhoods.Then a graph dilated convolution-based residual block is used for feature aggregation in a more efficient manner.To relieve the imbalance in sampling,we use inverse frequency weighting cross entropy as the loss function.In order to verify the effectiveness of the proposed method,the comparative experiments is conducted on the SensatUrban dataset.The result shows that,compared with the existing methods,the proposed method is optimal among various metrics,which proves that our method has effectiveness and practicality in the large-scale scene fine-grained semantic segmentation.

point cloudsemantic segmentationgraph encodingdeep learning3D real scene

王恺、王腾飞、王庆栋、韩晓霞

展开 >

甘肃省基础地理信息中心,兰州 730000

武汉大学测绘学院,武汉 430079

中国测绘科学研究院,北京 100036

点云 语义分割 图编码 深度学习 实景三维

中国测绘科学研究院基本科研业务项目中国测绘科学研究院基本科研业务项目甘肃省自然资源厅科技创新项目

AR2209AR2424202252

2024

测绘科学
中国测绘科学研究院

测绘科学

CSTPCD北大核心
影响因子:0.774
ISSN:1009-2307
年,卷(期):2024.49(5)
  • 2