首页|侧扫图像分割的无监督学习模型

侧扫图像分割的无监督学习模型

扫码查看
针对常用分割方法仅依赖于灰度属性信息,难以实现侧扫声呐图像复杂地物准确分割的问题,而深度学习法又显著依赖于样本的现状,该文提出了基于多尺度无监督神经网络模型的侧扫图像分割算法.首先通过多尺度卷积对输入进行特征提取、特征融合;然后进行归一化处理,避免欠分割现象;损失函数则考虑了特征相似性和空间连续性两层约束,以减少噪声对分割的影响,并解决分割结果间断不连续问题.经测试数据检测,该文方法在实测数据中取得了良好效果,在模拟数据中侧扫图像分割的重叠度为94.3%,假阳性率仅为0.08%,两项指标均显著优于其他方法,能有效满足侧扫分割的需求,对通航安全、海洋工程、水下考古等领域有参考.
Unsupervised learning model for side-scan sonar image segmentation
In view of the problem that common segmentation methods only rely on gray attribute information,it is difficult to achieve accurate segmentation of complex objects in side-scan sonar images,while deep learning methods significantly rely on the current situation of samples,a new SSS image segmentation algorithm based on unsupervised neural network model was proposed in this paper.Firstly,feature extraction and feature fusion were carried out by multi-scale convolution.Then normalization was carried out to avoid under segmentation.The loss function considered the constraints of feature similarity and spatial continuity to reduce the influence of noise on segmentation and solve the discontinuity problem of segmentation results.According to the test set segmentation,the proposed method achieved good results in the measured data.The intersection over union in the simulated data was 94.3%,and the false positive rate was only 0.08%.Both indexes were significantly superior to other methods,which could effectively meet the needs of side scan segmentation,and is of reference for navigation safety,ocean engineering,underwater archaeology and other fields.

side-scan sonar imagesimage segmentationunsupervised learningconvolution network

刘蕾、李厚朴、边少峰、翟国君

展开 >

海军工程大学 电气工程学院,武汉 430030

中国地质大学(武汉)地质探测与评估教育部重点实验室,武汉 430030

侧扫声呐图像 图像分割 无监督学习 卷积网络

国家优秀青年科学基金项目国家自然科学基金面上项目

4212202542374050

2024

测绘科学
中国测绘科学研究院

测绘科学

CSTPCD北大核心
影响因子:0.774
ISSN:1009-2307
年,卷(期):2024.49(6)