首页|差分视野融合与协同感知的建筑变化检测方法

差分视野融合与协同感知的建筑变化检测方法

扫码查看
针对当前建筑变化检测方法在边缘检测模糊和捕捉全局信息处理、小目标漏检方面存在问题,该文提出了一种差分视野融合与协同感知的建筑变化检测方法.采用孪生编码器提取图像特征,并通过差分解码器还原图像,一方面提出了差分视野融合模块,结合差分和多尺度技术相结,有效提取双时特征图中不同尺度的变化对象,并利用跳跃连接将其与解码器相连接;另一方面设计出协同感知模块,利用深层次中的抽象特征调节解码器中的浅层特征图;并在解码器输出特征图后,采用有效通道注意力模块进一步提升模型的检测性能.为了评估该方法的效果,分别在LEVIR-CD和WUH-CD数据集上进行实验,实验结果显示,相较于其他建筑变化检测方法,该方法在F1和IoU上表现最优,分别达到了91.34%、84.06%和91.43%、84.21%,这表明该方法在建筑变化检测任务中取得了显著的性能提升.
DiffoScope fusion and cooperative perception for detection of building changes
Given that the current building change detection methods have problems in edge detection blurring and capturing global information processing,and small target leakage detection,a building change detection method with diffoscope fusion and cooperative perception was proposed in this paper.The twin encoder was used to extract the image features and the image was restored by the differential decoder.On the one hand,a diffoscope fusion module was proposed,combining the differential and multi-scale technology conjunction,effectively extracting the change objects of different scales in the diachronic feature maps,and using the jump connection to connect them with the decoder;on the other hand,a cooperative perception module was designed,using the abstract features in the deep level to adjust the shallow feature maps in the decoder;And after the decoder outputs the feature maps,the effective channel attention module was used to further improve the detection performance of the model.To evaluate the effectiveness of the method,experiments were conducted on the LEVIR-CD and WUH-CD datasets,respectively,and the experimental results showed that it performed optimally on F1 and IoU compared to other building change detection methods,reaching 91.34%,84.06%,and 91.43% and 84.21%,respectively,which indicated that the method achieved a significant performance in the building change detection task improvement.

change detectionremote sensing imagedeep learningDiffoScope fusioncooperative perception

程泽敏、万书振、管宗胜、王伟成

展开 >

湖北省水电工程智能视觉监测重点实验室,湖北 宜昌 443002

三峡大学 计算机与信息学院,湖北 宜昌 443002

变化检测 遥感影像 深度学习 差分视野融合 协同感知

国家自然科学基金项目三峡库区生态环境教育部工程研究中心开放基金项目

61871258KF2023-11

2024

测绘科学
中国测绘科学研究院

测绘科学

CSTPCD北大核心
影响因子:0.774
ISSN:1009-2307
年,卷(期):2024.49(6)