首页|餐饮和零售行业热点区块提取与空间分布特征聚类分析

餐饮和零售行业热点区块提取与空间分布特征聚类分析

扫码查看
针对城市餐饮和零售行业热点区块提取方法中位置数据多维属性特征融合处理问题,该文提出引入非位置属性特征权重系数进行热点区块聚类分析,基于密度聚类分析方法建立了加权密度聚类模型,以新浪微博兴趣点数据为样本实证研究了武汉市部分服务业在样本期内的城市热点区块,分析了城市服务业空间分布的影响因素.研究发现,城市餐饮和零售业在整体上表现出较为明显的行业空间聚集性,城市热点区块的区域分布相对均衡,行业发展容易受到城市圈扩张的拉动效应影响.对比传统聚类分析方法,研究结果验证了加权密度聚类算法对样本城市热点区块提取具有明显优化效果,能提高提取出的城市热点区块的高热性.
Extraction of hotspot blocks in catering and retail industry and clustering analysis of spatial distribution features
Aiming at the problem of multi-dimensional attribute feature fusion processing of location data in the hot block extraction method of urban catering and retail industry,this paper proposes to introduce non-location attribute feature weight coefficient to perform hotspot block cluster analysis.In addition,a weighted density clustering model is established based on the traditional density cluster analysis method.This paper empirically studies the urban hot spots of some service industries in Wuhan City during the sample period by using Sina Weibo network check-in data as samples,and analyzes the influencing factors of the spatial distribution of urban service industries.The study found that urban catering and retail industry showed a relatively obvious spatial agglomeration on the whole,the regional distribution of urban hot spots was relatively balanced,and the development of the industry was easily affected by the pulling effect of city circle expansion.Compared with the traditional cluster analysis method,the research results verify that the weighted density clustering algorithm has obvious optimization effect on the extraction of urban hot spots,and can improve the high heat of the extracted urban hot spots.

urban hotspot blockspatial feature of urbanlocation dataDBSCAN

郭名静、熊鑫

展开 >

东华理工大学 理学院,南昌 330013

海军工程大学 教研保障中心,武汉 430033

城市热点区块 空间分布特征 位置数据 基于密度聚类分析

江西省社会科学"十三五"(2020年)基金项目

20GL17

2024

测绘科学
中国测绘科学研究院

测绘科学

CSTPCD北大核心
影响因子:0.774
ISSN:1009-2307
年,卷(期):2024.49(6)