首页|面向三维重建的SAM前景图像自动分割方法研究

面向三维重建的SAM前景图像自动分割方法研究

扫码查看
针对多视图图像三维重建前,图像数据存在背景冗余且干扰目标对象识别以及重建效率低的问题,该文提出一种基于segment anything model(SAM)的改进前景自动分割方法.首先通过调用SAM图像编码器计算输入图像的图像嵌入;根据图像像素计算像素坐标作为提示嵌入,自动预测前景掩码;SAM前景预测所得的掩码可能存在细小的漏分错分和边缘锯齿,引入高斯滤波对掩码图像进行优化;以人工构筑物、植物及其植物器官为例,将掩码应用于原始图像,利用分割后的图像进行多视图立体视觉三维重建与神经辐射场重建.基于多种图像数据的实验结果表明,该方法针对以对象为中心的多种图像数据可以有效剔除背景的干扰,取得高质量的分割结果,且在三维重建过程能够节省重建所需时间,提高三维重建效率.
Research on automatic foreground image segmentation of SAM for 3D reconstruction
Aiming at the problem that background redundancy and low efficiency in object recognition and reconstruction in the three-dimensional reconstruction of multi-view images,an improved automatic foreground segmentation method based on the Segment Anything Model(SAM)was proposed.Initially,the SAM image encoder was employed to calculate the image embedding of the input image;pixel coordinates were calculated as prompt embeddings according to the image pixel to predict the foreground mask.The mask obtained from SAM foreground prediction may contain minor misclassifications and edge jaggies,thus Gaussian filtering was introduced to optimize the mask image.Taking artificial structures,plants,and their organs as examples,the mask was applied to the original image,and the segmented image was used for multi-view stereo vision 3D reconstruction and neural radiance field reconstruction.Experimental results based on various image data showed that this method can effectively eliminate background interference,achieve high-quality segmentation results for images centered on objects,and save reconstruction time,thereby improving the efficiency of 3D reconstruction.

foreground segmentationSAMmulti-view3D reconstructionneural radiance field

陈季委、唐丽玉、苏宏霖

展开 >

福州大学空间数据挖掘与信息共享教育部重点实验室,福州 350108

福州大学地理空间信息技术国家地方联合工程研究中心,福州 350108

数字中国研究院(福建),福州 350108

前景分割 SAM 多视图 三维重建 神经辐射场

2024

测绘科学
中国测绘科学研究院

测绘科学

CSTPCD北大核心
影响因子:0.774
ISSN:1009-2307
年,卷(期):2024.49(10)