首页|主成分分析与BP神经网络结合的叶绿素a浓度反演模型

主成分分析与BP神经网络结合的叶绿素a浓度反演模型

扫码查看
针对MODIS不同波段之间信息冗余对叶绿素a(Chl)浓度建模的影响,该文在建模中引入主成分分析(PCA)方法,提出了一种PCA与BP神经网络相结合的Chl浓度反演模型(PCA-BPN).通过主成分分析,从多个相关波段中提取出几个相互独立的关键主成分,然后将这些关键主成分作为BP神经网络的输入,通过网络自主学习构建Chl浓度反演模型.实验表明,前3个主成分包含了波段信息的99.5%,降低了神经网络的输入维度.与Aqua卫星上MODIS(MODISA)标准Chl反演模型OCI相比,PCA-BPN模型提高了反演精度,在全球海域Chl浓度反演中具有一定的应用潜力.
Study on chlorophyll a concentration inversion method based on principal component analysis and BP neural network
Aiming at the correlation between MODIS different bands and the impact of information redundancy between different bands on Chl concentration modeling,the principal component analysis(PCA)method was introducec into the modeling and a Chl concentration inversion model combining PCA and BP network(PCA-BPN)was proposed in this paper.Through principal component analysis,several independent key principal components were extracted from multiple related bands,and then these key principal components were used as the input of BP network to construct the Chl concentration inversion model through network autonomous learning.Experimental results showed that the first three principal components contained 99.5%of the band information,which reduced the input dimension of the neural network.Compared with the MODISA standard Chl inversion model OCI,PCA-BPN model had higher inversion accuracy and certain application potential in the retrieval of Chl concentration in the global ocean water.

MODIS satelliteprincipal component analysisartificial neural networkschlorophyll concentrationinversion model

解学通、郑艳、张金兰、陈克海

展开 >

广州大学地理科学与遥感学院,广州 510006

广东工贸职业技术学院测绘遥感信息学院,广州 510510

MODIS卫星 主成分分析 神经网络 叶绿素浓度 反演模型

2024

测绘科学
中国测绘科学研究院

测绘科学

CSTPCD北大核心
影响因子:0.774
ISSN:1009-2307
年,卷(期):2024.49(10)