首页|一种三维点云语义分割的深度特征提取方法

一种三维点云语义分割的深度特征提取方法

扫码查看
针对当前三维点云语义分割中存在的几何信息丢失、局部特征提取不足以及局部上下文信息利用不充分等关键问题,该文提出一种融合点云曲面特征与空间视觉信息的语义分割模型,采用双池化策略和自注意力机制,增强模型对点云数据的深入理解.首先通过曲面与空间视觉局部特征提取模块精确捕捉局部几何结构和空间布局,随后利用双池化融合自注意力局部特征聚合模块高效整合局部特征,强化对点云全局信息的捕捉能力.在公开的S3DIS数据集上进行实验评估,结果显示,模型的平均交并比精度达到了 71.35%,与其他模型相比有明显提升,在参数数量和计算效率上也进行了优化,在计算资源有限的环境下实现高效的点云处理,实验结果验证了本文模型在提升分割精度的同时兼顾计算效率,为三维点云语义分割的的实用化和广泛应用提供新的可能.
A method for deep feature extraction in 3D point cloud semantic segmentation
Addressing the key issues in 3D point cloud semantic segmentation,such as the loss of geometric information,insufficient extraction of local features,and inadequate utilization of local contextual information,this paper proposes a semantic segmentation model that integrates point cloud surface features with spatial visual information,employing dual pooling strategies and self-attention mechanisms to enhance the model's in-depth understanding of point cloud data.Initially,the model captures local geometric structures and spatial layouts with precision through a Curvature and Spatial Visual Local Feature Extraction module,followed by the efficient integration of local features using a Dual Pooling and Self-Attention Local Feature Aggregation module,which strengthens the model's ability to capture global point cloud information.Experimental evaluation on the public S3DIS dataset demonstrates that the model achieves an average Intersection over Union(IoU)accuracy of 71.35%,showing a significant improvement compared to other models.The model also features optimizations in parameter count and computational efficiency,enabling efficient point cloud processing even in environments with limited computing resources.The experimental results confirm that our model not only improves segmentation accuracy but also balances computational efficiency,offering new possibilities for the practical application and widespread use of 3D point cloud semantic segmentation.

point cloudfeature extractionfeature aggregationattention mechanismsemantic segmentation

武斌、王远哲、丛佳、赵洁

展开 >

天津城建大学计算机与信息工程学院,天津 300384

点云 特征提取 特征聚合 注意力机制 语义分割

2024

测绘科学
中国测绘科学研究院

测绘科学

CSTPCD北大核心
影响因子:0.774
ISSN:1009-2307
年,卷(期):2024.49(10)