首页|小尺度山区地质灾害隐患的无人机精细化识别方法与实践

小尺度山区地质灾害隐患的无人机精细化识别方法与实践

扫码查看
本文针对小空间尺度范围内以滑坡、崩塌为主的山区地质灾害,提出了一套基于小型无人机摄影测量的精细化隐患识别方法.首先,针对工作区开展至少两期无人机摄影测量作业,经处理后得到实景三维模型、数字正射影像(DOM)、数字表面模型(DSM)等精细化成果;其次,以两期DOM与DSM变化检测为主实现灾害体识别;然后,基于灾害体共性特征建立典型识别标志,并依此采用三维实景目视解译为主方法实现孕灾体识别;最后,通过地面核查确认或排除隐患.将该套方法应用到三峡库首秭归泄滩河左岸顺向斜坡区域,共识别出10 处不同类型隐患,证明了方法的可行性.
Refined identification method and practice of unmanned aerial vehicle for geological hazards in small-scale mountainous areas
In this paper,aiming at the geological disasters in small-scale mountainous areas,such as landslides and collapses,a set of refined hidden danger identification method based on small UAV photogrammetry is proposed.Firstly,carry out at least two drone photogrammetry operations for the work area,and obtain refined results such as realistic 3D models,digital orthophoto images(DOM),and digital surface models(DSM)after processing.Secondly,the main focus is on detecting changes in DOM and DSM in two phases to achieve disaster body recognition.Once again,summarize the common characteristics of disaster bodies and establish identification indicators for typical disasters.Then,based on the identification markers,the three-dimensional visual interpretation method is mainly used to identify the pregnant body.Finally,identify or eliminate potential hazards through ground inspections.Applying this method to the left bank slope area of the Xietan River in Zigui,the head of the Three Gorges Reservoir,and 10 different types of hidden dangers are identified,which proves the feasibility of the method.

geological disasters in mountainous areasidentification of hidden dangerscharacteristics of pregnancy disasterunmanned aerial vehiclechange detection

黄海峰、张瑞、周红、易武、薛蓉花、董志鸿、柳青、邓永煌、张国栋

展开 >

三峡大学湖北长江三峡滑坡国家野外科学观测研究站,湖北宜昌 443002

三峡大学三峡库区地质灾害教育部重点实验室,湖北宜昌 443002

三峡大学湖北省水电工程智能视觉监测重点实验室,湖北宜昌 443002

宜昌市地质环境监测站,湖北宜昌 443002

展开 >

山区地质灾害 隐患识别 孕灾特征 无人机 变化检测

国家自然科学基金国家自然科学基金国家自然科学基金三峡库区地质灾害教育部重点实验室开放基金水电工程智能视觉监测湖北省重点实验室开放基金

U21A203142007237421074892020KDZ092020SDSJ02

2024

测绘通报
测绘出版社

测绘通报

CSTPCD北大核心
影响因子:1.027
ISSN:0494-0911
年,卷(期):2024.(1)
  • 15