首页|基于双目深度筛选的ORB-SLAM3算法

基于双目深度筛选的ORB-SLAM3算法

扫码查看
针对ORB-SLAM3 算法中特征点存在易丢失、精度低,进而导致双目在复杂场景下运动轨迹误差大的问题,本文设计了一种改进的ORB-SLAM3 算法.首先,在ORB特征匹配算法中引入自适应角点检测技术,增加特征点的采集数量,并采用光流法跟踪图像特征,提高关键帧的创建成功率;其次,以特征点为中心,作区域搜索,提高实时性;然后,采用双向左右一致性检验筛选最优视差,应用Prosac算法去除误匹配点对;最后,结合深度信息对关键帧进行筛选,提高关键帧的质量,优化相机位姿.采用KITTI和EuRoc数据集进行了试验,验证了改进算法在绝对轨迹误差上具有良好的优化效果.
ORB-SLAM3 algorithm based on binocular depth screening
Aiming at the problem that feature points in ORB-SLAM3 algorithm are easily lost and have low accuracy,which in turn leads to large errors in motion trajectory of binoculars in complex scenes,this paper designs an improved ORB-SLAM3 algorithm.Firstly,the adaptive corner point detection technology is introduced in the ORB feature matching algorithm to increase the number of feature point acquisition.Secondly,the optical flow method is used to track the image features to improve the success rate of key frame creation.Then the region search is done with the feature points as the center to improve the real-time performance,the bi-directional left-right consistency test is used to screen the optimal parallax,the Prosac algorithm is applied to remove the mis-matched point pairs.Finally,the depth information is combined with the key frame.the depth information is combined with the key frame screening to improve the quality of key frames and optimize the camera pose.The improved algorithm has good robustness and positioning accuracy in absolute trajectory error.

binocular visionORB-SLAM3optical flow methodProsac algorithm

符强、腾先云、纪元法、任风华、孔健明

展开 >

桂林电子科技大学广西精密导航技术与应用重点实验室,广西桂林 541004

桂林电子科技大学信息与通信学院,广西桂林 541004

卫星导航与位置服务国家与地方联合工程研究中心 ,广西桂林 541004

桂林电子科技大学电子工程与自动化学院,广西桂林 541004

展开 >

双目视觉 ORB-SLAM3 光流法 Prosac算法

广西科技厅项目广西科技厅项目广西科技厅项目广西科技厅项目国家自然科学基金国家自然科学基金广西八桂学者团队项目广西高校中青年教师科研基础能力提升项目桂林电子科技大学研究生教育创新计划

桂科AA20302022桂科AB21196041桂科AB22035074桂科AD2208006162061010621610072022KY01812021YCXS026

2024

测绘通报
测绘出版社

测绘通报

CSTPCD北大核心
影响因子:1.027
ISSN:0494-0911
年,卷(期):2024.(1)
  • 7