首页|基于多源高分辨率遥感影像的典型自然资源要素提取

基于多源高分辨率遥感影像的典型自然资源要素提取

扫码查看
利用高分辨率遥感数据具有高空间分辨率的特性,本文以青海省西宁市0.3和1 m多源高分辨遥感影像为数据源,基于卷积神经网络深度学习算法进行典型自然资源要素提取.结果表明,0.3 m遥感影像提取耕地、林地准确率均在85%以上,召回率在89%以上;1 m遥感影像提取耕地林地准确率在90%以上,召回率在91%以上,研究成果可用于西宁市自然资源典型要素智能提取.
Extraction of typical natural resource elements based on multi-source high-resolution remote sensing images
Using high-resolution remote sensing data with high spatial resolution characteristics, typical natural resource elements are extracted based on traditional convolutional neural network deep learning algorithms using multi-source high-resolution remote sensing images of 0. 3 and 1 m in Xining, Qinghai province as data sources. The results show that the accuracy of extracting farmland and forest land from 0. 3 m remote sensing images is over 85%, with a recall rate of over 89%. The accuracy of extracting farmland and forest land from 1 m remote sensing images is over 90%, with a recall rate of over 91%. The research results can be used for intelligent extraction of typical elements of natural resources in Xining.

high-resolutionconvolutional neural networksdeep learningremote sensing interpretation

马锦山、贾国焕、张赛、张炯

展开 >

西宁市国土勘测规划研究院有限公司,青海 西宁810000

中科北纬(北京)科技有限公司,北京100192

高分辨率 卷积神经网络 深度学习 遥感解译

2024

测绘通报
测绘出版社

测绘通报

CSTPCD北大核心
影响因子:1.027
ISSN:0494-0911
年,卷(期):2024.(3)
  • 13