首页|改进ICP算法的激光雷达点云配准

改进ICP算法的激光雷达点云配准

扫码查看
针对传统ICP算法在激光雷达目标点云配准中存在匹配时间长,以及受初值影响导致该算法应用在无人车SLAM技术中容易存在定位精度不高和稳健性较差的问题,本文提出了一种结合KD-tree算法的NDT-ICP算法.首先,通过Voxel Grid滤波对激光雷达获取的点云数据进行预处理,利用平面拟合参数的方法去除地面点云;然后,利用NDT算法进行点云粗匹配,缩短目标点云与待匹配点云距离;最后,通过KD-tree邻近搜索法提高对应点查找速度,并通过优化收敛阈值,完成ICP算法的精匹配.试验结果表明,本文提出的改进算法相比于NDT算法和ICP算法,在点云配准速度和精度上有明显提高,且在地图构建上精度和稳健性更好.
LiDAR point cloud registration with improved ICP algorithm
The traditional ICP algorithm has long matching time and is affected by initial values in LiDAR target point cloud matching,which leads to low positioning accuracy and poor robustness when applied to unmanned vehicle SLAM technology.Proposes an NDT-ICP algorithm that combines the KD-tree algorithm.Firstly,voxel grid filtering is used to preprocess the point cloud data obtained from LiDAR,and the method of plane fitting parameters is used to remove point cloud of ground.Secondly,use NDT algorithm for point cloud coarse matching to shorten the distance between the target point cloud and the point cloud to be matched.Finally,the KD-tree proximity search method is used to improve the speed of corresponding point search,and the precise matching of the ICP algorithm is completed by optimizing the convergence threshold.Through experiments,it has been shown that the improved algorithm proposed in this article has significantly improved speed and accuracy in point cloud matching compared to NDT and ICP algorithms,and has better accuracy and robustness in map construction.

unmanned vehiclepoint cloud registrationICP algorithmNDT algorithmlaser SLAM

许哲、董林啸、吴家跃

展开 >

上海海洋大学工程学院,上海 201306

上海海洋可再生能源工程技术研究中心 ,上海 201306

无人车 点云配准 ICP算法 NDT算法 激光SLAM

上海市联盟计划上海市科学技术委员会资助项目

D-8006-05-003119DZ2254800

2024

测绘通报
测绘出版社

测绘通报

CSTPCD北大核心
影响因子:1.027
ISSN:0494-0911
年,卷(期):2024.(4)
  • 17