首页|基于GTWR模型的3 km京津冀PM2.5时空分布和影响因素分析

基于GTWR模型的3 km京津冀PM2.5时空分布和影响因素分析

扫码查看
PM2.5与空气质量和公众健康密切相关,许多研究使用遥感结合其他辅助数据的模型反演PM2.5的浓度,以捕捉各地区PM2.5时空分布.本文针对京津冀地区数据分辨率较低的问题,采用3 km分辨率的气溶胶光学厚度(AOD)数据及12个辅助变量,建立时间地理加权回归模型(GTWR),估算3 km京津冀地区2020—2022年PM2.5浓度分布.结果表明:①GTWR模型数据的R2(0.86)均优于OLS模型数据的R2(0.66)和GWR模型数据的R2(0.78).②在时空分布上,2020—2022年京津冀PM2.5浓度的空间分布与地形呈负相关.低值区主要分布在地势较高的山区;高值区主要分布在地势较低的平原.③2020—2022年京津冀PM2.5季节平均浓度差异显著,由高至低依次为冬季(60.88μg/m3)、秋季(37.78μg/m3)、春季(31.75μg/m3)、夏季(22.16μg/m3).④PM2.5浓度与AOD的相关性最强.研究得出3 km分辨率的AOD数据与GTWR模型相结合在反演PM2.5浓度方面具有较好的适用性.
Spatial and temporal distribution and influencing factors of PM2.5 in 3 km Beijing-Tianjin-Hebei region based on GTWR model
PM2.5 is closely related to air quality and public health, and many studies use remote sensing combined with other auxiliary data models to invert PM2.5 concentration to capture the spatial and temporal distribution of PM2.5 in various regions. Aiming at the problem of low data resolution in the Beijing-Tianjin-Hebei region, this study adopts 3 km resolution aerosol optical depth( AOD) data and 12 auxiliary variables to establish a geographically and temporally weighted regression model ( GTWR) to estimate the PM2.5 concentration distribution in the 3 km Beijing-Tianjin-Hebei region during 2020—2022. The results show that:①the R2 of GTWR model data ( 0.86 ) is better than that of OLS model data ( 0.66 ) and GWR model data ( 0.78 ) . ②The spatial and temporal distribution of PM2.5 concentration in the Beijing-Tianjin-Hebei region during 2020—2022 is negatively correlated with the terrain. The low-value area is mainly distributed in the high-lying mountainous area, and the high-value area is mainly distributed in the low-lying plain.③The seasonal mean concentration of PM2.5 in Beijing-Tianjin-Hebei from 2020 to 2022 was significantly different as follows:winter (60.88μg/m3), autumn (37.78 μg/m3), spring (31.75 μg/m3), summer (22.16 μg/m3). ④The correlation between PM2.5 concentration and AOD is the strongest. It is concluds that the combination of 3 km resolution AOD data and GTWR model has good applicability in retrieving PM2.5 concentration.

PM2.5aerosol optical depthGTWRspatial and temporal distribution

王岩、刘纪平、赵阳阳、徐婧

展开 >

辽宁工程技术大学测绘与地理科学学院,辽宁 阜新123000

中国测绘科学研究院,北京100036

兰州交通大学测绘与地理信息学院,甘肃 兰州730070

PM2.5 气溶胶光学厚度 时空地理加权 时空分布

国家自然科学基金

42001343

2024

测绘通报
测绘出版社

测绘通报

CSTPCD北大核心
影响因子:1.027
ISSN:0494-0911
年,卷(期):2024.(6)
  • 6