首页|基于径向梯度的车载LiDAR点云路面点提取

基于径向梯度的车载LiDAR点云路面点提取

扫码查看
针对大规模车载LiDAR点云数据量庞大,以及因障碍物遮挡或道路起伏导致提取结果准确度欠佳且存在噪声等问题,本文采用一种基于径向梯度的车载LiDAR点云路面点提取方法.首先对点云数据进行预处理,包括直通滤波和体素滤波降采样;然后根据车载激光雷达的设备参数,将极坐标系下的点云投影至扇形格网内;最后以扇形格网为基础,提取基于移动窗口的径向梯度路面点,并利用最小二乘法对提取的路面进行平面拟合,优化提取结果.试验选取KITTI数据集用于提取路面点,结果表明,相较于其他路面点提取方法,本文方法稳健性强、准确度高,其中,路面点提取的平均准确度可达91.85%,平均完整度可达80.63%,平均精度可达75.25%.
Road surface points extraction from vehicle LiDAR point cloud based on radial gradient
To address the challenges of road surface extraction from large-scale vehicle LiDAR point clouds,including difficulties caused by obstacles occluding the road surface and variations in road topography leading to inaccuracies and noise in the extraction results,this paper introduces a vehicle LiDAR point cloud road surface extraction method based on radial gradients.The method involves initial data preprocessing,including pass-through filtering and voxel downsampling.Subsequently,the point cloud data is transformed into polar coordinates,which is projected onto a fan-shaped grid based on the hardware parameters of the vehicle's LiDAR system.Using the fan-shaped grid as a foundation,a radial gradient road surface point extraction is performed within a moving window,and a plane fitting technique is employed,optimized using the least-squares method to refine the extraction results.The KITTI dataset is chosen for road surface point extraction experiments.Results indicate that compared to other road surface extraction methods this approach exhibits robustness and high accuracy,with an average accuracy of 91.85%,an average completeness of 80.63%,and an average precision of 75.25%in road surface point extraction.

vehicle LiDAR point cloudpoint cloud filteringfan gridradial gradientroad surface points

毛镜懿、王竞雪、董啸

展开 >

辽宁工程技术大学测绘与地理科学学院,辽宁阜新 123000

车载LiDAR点云 点云滤波 扇形格网 径向梯度 路面点

国家自然科学基金面上项目辽宁省兴辽英才计划辽宁省应用基础研究计划

41871379XLYC20070262022JH2/101300273

2024

测绘通报
测绘出版社

测绘通报

CSTPCD北大核心
影响因子:1.027
ISSN:0494-0911
年,卷(期):2024.(7)
  • 11