首页|基于语义分割网络的冬小麦遥感分类及变化分析

基于语义分割网络的冬小麦遥感分类及变化分析

扫码查看
针对传统机器学习作物遥感分类模型泛化能力较弱等问题,本文评价并验证了不同语义分割网络在光谱特征和光谱+植被指数特征下的济源市冬小麦遥感分类模型的性能和分类精度.结果表明,较单一光谱特征,基于U-Net++和DeepLab V3+的光谱+植被指数特征模型损失函数和IoU值分别降低和提高了 13.30%和 7.83%、7.80%和 5.54%.此外,基于U-Net++的 2020-2023 年冬小麦分类总体精度达 93.47%~95.60%,较DeepLab V3+和随机森林分类的总体精度分别提高了 0.12%~2.29%和4.84%~7.40%;景观度值也表明基于U-Net++的冬小麦分类结果具有更优的图斑完整度和紧凑度.最后,本文定量评价了不同年份冬小麦种植面积空间变化结果,为复杂地形条件下作物面积监测应用提供了方法支持.
Classification and change analysis of winter wheat using remote sensing based on semantic segmentation network
To improve the weak generalization ability of traditional machine learning methods in remote sensing crop classification,winter wheat classification models that employs Sentinel-2 images with different feature selections and semantic segmentation networks are tested and evaluated in Jiyuan city,Henan province.The results show that compared to the spectral features,the model loss and IoU values of the DeepLab V3+and U-Net++based on spectral and vegetation indices are reduced and improved by 13.30%and 7.83%,7.80%and 5.54%,respectively.In addition,the overall accuracy of winter wheat classification results based on U-Net++from 2020 to 2023 is 93.47%~95.60%,which is 0.12%~2.29%and 4.84%~7.40%higher than that of DeepLab V3+and random forest,respectively.Moreover,the landscape metrics values also indicate that the winter wheat classification results based on U-Net++network perform better patch integrity and compactness.Finally,the change data and spatial distribution of winter wheat based on U-Net++from 2020 to 2023 are analyzed.It can provide methodological support for practical applications such as crop area monitoring under complex terrain conditions.

hilly areaswinter wheatSentinel-2semantic segmentation networkrandom forest

孙常建、尚永福、王石岩、窦小楠

展开 >

河南省地理信息院,河南 郑州 450000

丘陵地区 冬小麦 Sentinel-2 语义分割网络 随机森林

2020年度河南省自然资源科研项目

2020-8

2024

测绘通报
测绘出版社

测绘通报

CSTPCD北大核心
影响因子:1.027
ISSN:0494-0911
年,卷(期):2024.(10)