首页|利用行车记录仪视频提取路面车道线

利用行车记录仪视频提取路面车道线

扫码查看
路面车道线是高精地图的关键组成部分,搭载在网约车上的海量行车记录仪视频是对道路信息的实时观测,是一种较为经济的车道线数据提取的重要数据源.本文基于海量的滴滴网约车行车记录仪视频,探讨了基于LaneNet深度网络模型的路面车道线数据提取方法的可行性.该方法首先利用LaneNet网络模型对每帧视频图像进行语义分割,进而通过预测透视变换矩阵,实现对车道线像素点位置的拟合提取,最后采用模拟数据和复杂场景下的滴滴行车记录仪数据进行试验结果评价.试验结果表明,本文采用模型在车载视频图像中具有较好的车道线提取性能.
Extracting road lane lines from driving recorder video
Road lane lines are a key component of high-precision maps.The massive driving recorder videos mounted on online ride-hailing vehicles are real-time observations of road information and are an important data source for more economical lane line data extraction.Based on the massive Didi ride-hailing driving record videos,this paper explores the feasibility of the road lane line data extraction method based on the LaneNet deep network model.This method first uses the LaneNet network model to perform semantic segmentation on each frame of the video image,and then predicts The perspective transformation matrix realizes the fitting and extraction of the lane line pixel position.In the experimental analysis,simulation data and Didi driving recorder data in complex scenes were used to evaluate the experimental results.The experimental results show that the model used in this article has better lane line extraction performance in vehicle video images.

vehicle-mounted videohigh-precision maplane linessemantic segmentationroad extraction

黄金彩、李诗逸、石岩

展开 >

中南大学大数据研究院,湖南长沙 410083

中南大学地球科学与信息物理学院,湖南长沙 410083

车载视频 高精地图 车道线 语义分割 道路提取

2024

测绘通报
测绘出版社

测绘通报

CSTPCD北大核心
影响因子:1.027
ISSN:0494-0911
年,卷(期):2024.(12)